Secondary structures

- Secondary structures are repeated local structural elements formed by consecutive amino acids with similar ϕ and ψ values.
- Stabilized by hydrogen bonds between backbone atoms but formation of a particular type of secondary structure is dictated by protein sequence.
- Formed in the early stages of protein folding following hydrophobic collapse.
- Formation of secondary structures allows the packing of polar backbone atoms in the hydrophobic core of protein structures.

α helix

Figure 8-13 Illustration, Irving Geis. Image from the Irving Geis Collection, Howard Hughes Medical Institute. Reprinted with permission.

The right-handed α helix

- Hydrogen bonds form between residue n and n + 3
- Φ and ψ are around -60° and -50°, respectively.
- 3.6 residues per turn; 5.4 Å between turns

Helix propensity of amino acids

Ala
eu
∕let
٩rg
_ys
Gln
Glu
lle
Trp
Ser
Tyr
Phe
Val
Thr
lis
Cys
Asn
Asp
•
•
Gly
^{>} ro

Table 5.3	Relative Helical Tendencies		
of the Amino Acids Measured in One Peptide			

Amino acid residue	Relative stabilization o α -helical conformation (kcal/mol)	
Ala	-0.77	
Arg	-0.68	
Lys	-0.65	
Leu	-0.62	
Met	-0.50	
Trp	-0.45	
Phe	-0.41	
Ser	-0.35	
Gln	-0.33	
Glu	-0.27	
Cys	-0.23	
Ile	-0.23	
Tyr	-0.17	
Asp	-0.15	
Val	-0.14	
Thr	-0.11	
Asn	-0.07	
His	-0.06	
Glv	0	
Pro	≈3	

The helix wheel

• Amphipathic: having both hydrophilic and hydrophobic parts.

The helix wheel

Three types of helices

- 3₁₀ helix (φ: -49°, ψ: -26°, n: 3, d: 6.0Å)
- α -helix (ϕ : -57°, ψ : -47°, n: 3.6, d: 5.4Å): the most stable and common
- π-helix (φ: -57°, ψ: -70°, n: 4.4, d: 5.2Å)

Anti-parallel β sheet (ϕ : -139°, ψ : -135°)

© 1999 GARLAND PUBLISHING INC. A member of the Taylor & Francis Group

Anti-parallel β sheet (ϕ : -139°, ψ : -135°)

Parallel β sheet (ϕ : -119°, ψ : -113)

© 1999 GARLAND PUBLISHING INC. A member of the Taylor & Francis Group

An amphipathic β sheet

Loop

Structure motif

Structure motif

Coiled-coil

Protein domains

TATA-binding protein (1TBP)

scorpion toxin (1B7D)

Where to find and visualize protein structures?

- Protein Data Bank: https://www.rcsb.org/
- Visualization software:
 - Chimera
 - VMD
 - PyMol