
8. Monte Carlo Simulations



Observables in classical statistical mechanics

▶ the average value of an observable A is

⟨A⟩ =
∫

p(r1, r2, . . .)A(r1, r2, . . .) dr1 dr2 . . .

=

∫
exp(−βU(r1, r2, . . .))A(r1, r2, . . .) dr1 dr2 . . .∫

exp(−βU(r1, r2, . . .)) dr1 dr2 . . .

▶ a force field specifies U(r1, r2, . . .) for a given system

▶ to calculate the average value of an observable, we need to draw samples from the
Boltzmann distribution p(r1, r2, . . .)
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Sampling from a probability distribution

▶ for a probability distribution p(x), drawing samples from it means generating a sequence of
random numbers {x1, x2, . . .} such that the probability of x being in the sequence is p(x)

▶ in other words, the histogram of sampled numbers should match the probability
distribution

▶ when p(x) is a standard distribution, such as the uniform or normal distribution,
specialized procedures are available to draw samples from it

▶ however, these specialized procedures do not work for general probability distributions
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Sampling from standard distributions

▶ assume we know how to draw samples from a uniform distribution on the interval [0, 1]

x = rand()

▶ how to draw samples from a uniform distribution on the interval [a, b]

y = a+ (b− a)× x

▶ how to draw samples from a normal distribution with mean 0 and standard deviation 1
the Box-Muller transform

u = rand(); v = rand()

x =
√
−2 lnu cos(2πv)

y =
√
−2 lnu sin(2πv)

▶ many programming languages provide functions to draw samples from standard
distributions
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General methods for sampling

▶ Monte Carlo methods

– rejection sampling
– importance sampling
– Markov chain Monte Carlo - Metropolis-Hastings algorithm

▶ Molecular dynamics simulations
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Rejection sampling

▶ how to draw samples from a uniform distribution inside a circle of radius 1 centered at the
origin in 2D

repeat the following steps

1. draw a random point (x, y) in the
square [−1, 1]× [−1, 1]

2. if the point is inside the circle, keep
it; otherwise, discard it

x

y

(−1,−1)

(−1, 1) (1, 1)

(1,−1)
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Importance sampling

▶ the average value of an observable A(x) with respect to a probability distribution p(x) is

⟨A⟩ =
∫

p(x)A(x) dx

▶ if drawing samples from p(x) is difficult whereas drawing samples from another probability
distribution q(x) is easy, the average value can be estimated as

⟨A⟩ =
∫

q(x)
p(x)

q(x)
A(x) dx ≈ 1

N

N∑
i=1

p(xi)

q(xi)
A(xi),

where {x1, x2, . . . , xN} are samples drawn from q(x)

▶ w(xi) = p(xi)/q(xi) is called the importance weight
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Importance sampling

▶ to generate samples from a probability distribution p(x) using importance sampling

1. draw samples {x1, x2, . . . , xN} from a probability distribution q(x)
2. calculate the importance weights {w(x1), w(x2), . . . , w(xN )}

▶ the average value of an observable A(x) with respect to p(x) is

⟨A⟩ ≈ 1

N

N∑
i=1

w(xi)A(xi)

▶ for q(x), {x1, x2, . . . , xN} are samples with equal weights; for p(x), {x1, x2, . . . , xN} are
samples with importance weights

▶ {x1, x2, . . . , xN} and their importance weights can be used to generate samples of p(x)
with equal weights by resampling
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Sampling from a triangular distribution

▶ how to draw samples from the following triangular distribution

x

p(x)

−1

1

1

– using rejection sampling
– using importance sampling

(ML ∪ MD) ∩ Biophysics Ding 8.8



Rejection sampling and importance sampling

▶ both requires sampling from a proposal distribution q(x)

▶ their efficiency depends on the choice of q(x)

▶ q(x) should be close to the target distribution p(x)

▶ q(x) should be easy to sample from

▶ difficult to find a good proposal distribution for a general target distribution p(x)
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Markov chain Monte Carlo

▶ a general method to sample from a probability distribution p(x)

▶ generates a sequence of samples {x1, x2, . . .}, where each sample is generated using the
previous sample, i.e., it is a Markov chain

▶ assume that the sample at step i is xo, the sample at step i+ 1 is generated based on the
transition probability T (xn|xo)

▶ the transition probability is designed such that the samples generated by the Markov chain
converge to the target distribution p(x)

▶ one design principle is to make the transition probability satisfy the detailed balance
condition

p(xo)T (xn|xo) = p(xn)T (xo|xn)
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Detailed balance condition

▶ the detailed balance condition

p(xo)T (xn|xo) = p(xn)T (xo|xn)

implies that the probability flow going from xo to xn is equal to the probability mass going
from xn to xo

▶ along with other conditions, the detailed balance condition ensures that p(x) is invariant
with respect to the transition probability

xo ∼ p(x) =⇒ xn ∼ p(x)

proof ∑
xo

p(xo)T (xn|xo) =
∑
xo

p(xn)T (xo|xn) = p(xn)
∑
xo

T (xo|xn) = p(xn)
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Metropolis-Hastings algorithm

▶ a special case of the Markov chain Monte Carlo method

▶ the algorithm

1. given the sample xo at step i, propose a new sample xn using a proposal distribution
q(xn|xo)

2. calculate the acceptance probability

α(xn|xo) = min

(
1,

p(xn)q(xo|xn)

p(xo)q(xn|xo)

)
3. xi+1 = xn with probability α(xn|xo); otherwise, xi+1 = xo

▶ the transition probability is

T (xn|xo) = q(xn|xo)α(xn|xo)
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Metropolis-Hastings algorithm

▶ it satisfies the detailed balance condition

p(xo)T (xn|xo) = p(xo)q(xn|xo)α(xn|xo) = p(xn)q(xo|xn)α(xo|xn) = p(xn)T (xo|xn)

▶ when q(xn|xo) = q(xo|xn), the acceptance probability simplifies to

α(xn|xo) = min

(
1,

p(xn)

p(xo)

)
and the detailed balance condition simplifies to

p(xo)α(xn|xo) = p(xn)α(xo|xn)
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Metropolis-Hastings algorithm for Boltzmann distributions

▶ for a system with fixed N,V, T , the Boltzmann distribution is

p(r1, r2, . . .) =
1

Z
exp(−βU(r1, r2, . . .))

▶ the Metropolis-Hastings algorithm for the Boltzmann distribution

1. given the sample ro at step i, propose a new sample rn using a proposal distribution
q(rn|ro) that satisfies q(rn|ro) = q(ro|rn)

2. calculate the acceptance probability

α(rn|ro) = min

(
1,

exp(−βU(rn))

exp(−βU(ro))

)
= min (1, exp(−β∆U))

where ∆U = U(rn)− U(ro)
3. ri+1 = rn with probability α(rn|ro); otherwise, ri+1 = ro
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