8. Monte Carlo Simulations



Observables in classical statistical mechanics

» the average value of an observable A is

(4)

/p(I'l,I‘Q, .. .)AA(I'l,I'g7 .. ) dI‘l dI‘Q e

_ [ exp(=BU(ry,ro,...))A(r1,ra,...)dr drs ...
Jexp(—BU(r1,ro,...))dr1drs ...

» a force field specifies U(ry,ra,...) for a given system

» to calculate the average value of an observable, we need to draw samples from the
Boltzmann distribution p(ry,ra,...)
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Sampling from a probability distribution

> for a probability distribution p(z), drawing samples from it means generating a sequence of
random numbers {x1, z3,...} such that the probability of  being in the sequence is p(z)

» in other words, the histogram of sampled numbers should match the probability
distribution

» when p(z) is a standard distribution, such as the uniform or normal distribution,
specialized procedures are available to draw samples from it

» however, these specialized procedures do not work for general probability distributions
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Sampling from standard distributions

> assume we know how to draw samples from a uniform distribution on the interval [0, 1]

2 = rand()

» how to draw samples from a uniform distribution on the interval [a, b]
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>

Sampling from standard distributions

assume we know how to draw samples from a uniform distribution on the interval [0, 1]

2 = rand()

how to draw samples from a uniform distribution on the interval [a, b]
y=a+(b—a)xzx
how to draw samples from a normal distribution with mean 0 and standard deviation 1
the Box-Muller transform
u = rand(); v = rand()
= v/—2Inucos(2mv)
y =V —2Inusin(27v)

many programming languages provide functions to draw samples from standard
distributions
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General methods for sampling

» Monte Carlo methods

— rejection sampling
— importance sampling
— Markov chain Monte Carlo - Metropolis-Hastings algorithm

» Molecular dynamics simulations
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Rejection sampling

» how to draw samples from a uniform distribution inside a circle of radius 1 centered at the
origin in 2D
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Rejection sampling

» how to draw samples from a uniform distribution inside a circle of radius 1 centered at the
origin in 2D

(_171)

repeat the following steps

1. draw a random point (z,y) in the
square [—1,1] x [—1,1]

2. if the point is inside the circle, keep
it; otherwise, discard it
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Importance sampling

> the average value of an observable A(z) with respect to a probability distribution p(z) is
4) = [ ple)Alw) do

> if drawing samples from p(z) is difficult whereas drawing samples from another probability
distribution g(x) is easy, the average value can be estimated as

N
(A) = /q(x)MA(x) da ~ %Z p(x?;A(xi),

q(x;
where {x1,22,...,2 N} are samples drawn from ¢(x)
» w(x;) = p(x;)/q(x;) is called the importance weight
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Importance sampling

> to generate samples from a probability distribution p(x) using importance sampling

1. draw samples {z1,z2,...,zn} from a probability distribution g(z)
2. calculate the importance weights {w(x1), w(z2),...,w(zN)}

> the average value of an observable A(z) with respect to p(x) is

1
=1
» for g(x), {x1,x2,...,x N} are samples with equal weights; for p(x), {z1,22,..., 2N} are
samples with importance weights
» {x1,22,...,2N} and their importance weights can be used to generate samples of p(x)

with equal weights by resampling
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Sampling from a triangular distribution

» how to draw samples from the following triangular distribution

p(x)

— using rejection sampling
— using importance sampling
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Rejection sampling and importance sampling

both requires sampling from a proposal distribution ¢(x)
their efficiency depends on the choice of ¢(x)

q(x) should be close to the target distribution p(z)

q(z) should be easy to sample from

difficult to find a good proposal distribution for a general target distribution p(x)
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Markov chain Monte Carlo

» a general method to sample from a probability distribution p(x)

> generates a sequence of samples {x1, 22, ...}, where each sample is generated using the
previous sample, i.e., it is a Markov chain

» assume that the sample at step i is z,, the sample at step i + 1 is generated based on the
transition probability T'(z,,|x,)

P the transition probability is designed such that the samples generated by the Markov chain
converge to the target distribution p(x)

> one design principle is to make the transition probability satisfy the detailed balance
condition

p(2o)T (r WO) = p(xn)T(x0|$n)
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Detailed balance condition

» the detailed balance condition

(o) T (zn|T0) = p(n)T (To|70)

implies that the probability flow going from z, to xz, is equal to the probability mass going
from z,, to x,

» along with other conditions, the detailed balance condition ensures that p(x) is invariant
with respect to the transition probability

T, ~p(r) = n ~ p(2)

proof

Zp(xo)T($n|zo) = Zp(xn)T(Io‘xn) = p(xn) ZT(IO‘xn) = p(xn)

(ML U MD) n Biophysics Ding 8.11



Metropolis-Hastings algorithm

» a special case of the Markov chain Monte Carlo method

> the algorithm

1. given the sample z, at step 4, propose a new sample xz,, using a proposal distribution

q(znlzo)
2. calculate the acceptance probability

(n|5) = min (1, w)

P(wo)q(n|o)

3. Tiy1 = x, with probability a(x,|z,); otherwise, z;41 = o
» the transition probability is
T(znlzo) = q(xn|zo)(Tn o)
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Metropolis-Hastings algorithm

» it satisfies the detailed balance condition
p(mo)T(xn|xo) = p(mo)q(xn‘xo)a(xn‘xo) = p(xn)Q(xO‘xn)a(xo‘xn) = p(xn)T(mo|xn)

» when ¢(z,|z,) = q(z,|zn), the acceptance probability simplifies to

b))

a(Zn|x,) = min (1,
and the detailed balance condition simplifies to

p(ro)a(zn|r,) = p(on)a(z,|Ty)
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Metropolis-Hastings algorithm for Boltzmann distributions

» for a system with fixed N,V T, the Boltzmann distribution is

p(ri,re,...) = %exp(—BU(rl,rg, o))

» the Metropolis-Hastings algorithm for the Boltzmann distribution

1. given the sample r, at step ¢, propose a new sample r,, using a proposal distribution
q(rn|ro) that satisfies g(ry|ro) = q(ro|rn)
2. calculate the acceptance probability

exp(=BU(rs))

ateole) = min (1, S2EF S

> = min (1, exp(—BAU))

where AU = U(r,) — U(ro)
3. riy1 = r, with probability a(r,|r,); otherwise, riy1 =1,
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