
7. Classical Force Fields



Observables in classical statistical mechanics

▶ for a system with constant number of particles N , volume V , and temperature T , the
Boltzmann distribution on the positions of the particles is

p(r1, r2, . . .) =
exp(−βU(r1, r2, . . .))

Qpos
,

where Qpos =
∫
exp(−βU(r1, r2, . . .)) dr1 dr2 . . .

▶ the average value of an observable A is

⟨A⟩ =
∫

p(r1, r2, . . .)A(r1, r2, . . .) dr1 dr2 . . .

=

∫
exp(−βU(r1, r2, . . .))A(r1, r2, . . .) dr1 dr2 . . .∫

exp(−βU(r1, r2, . . .)) dr1 dr2 . . .

▶ need to specify the potential energy function U(r1, r2, . . .) for the system
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Classical force fields

▶ in classical molecular simulations, the potential energy function U(r1, r2, . . .) is often
approximated using empirical potentials

▶ such empirical potentials are called classical force fields

▶ approximate the true potential energy of a system for which the exact calculation requires
quantum mechanics

▶ are much faster to evaluate than quantum mechanical methods

▶ are often parameterized to reproduce quantum mechanical calculations or experimental
data
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Potential energy terms in classical force fields

Figure: A small protein in a water box
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Potential energy of bonds

▶ harmonic bond stretching

Ubond(b) =
1

2
kb(b− b0)

2

▶ example: O-H bond in water

b0 = 0.09572 nm, kb = 376560 kJ mol−1 nm−2

O

HH

b

Ubond(b)

b0 = 0.09572 nm
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Potential energy of angles

▶ harmonic angle bending

Uangle(θ) =
1

2
kθ(θ − θ0)

2

▶ example: H-O-H angle in water

θ0 = 1.824 rad, kθ = 460.24 kJ mol−1 rad−2

O

HH θ

θ

Uangle(θ)

θ0 = 1.824 rad
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Potential energy of torsions

▶ periodic torsion potential

Utorsion(ϕ) = kϕ[1 + cos(nϕ− δ)],

where ϕ is the torsion angle, n is the periodicity, and δ is the phase shift

▶ example: torsion Cα − C− N− Cα in a protein

Utorsion(ϕ) = 6.7 [1 + cos(ϕ− 0◦)] + 10.5 [1 + cos(2ϕ− 180◦)] kJ mol−1
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Electrostatic potential energy

▶ Coulombic interactions between charged particles

Uelec =
1

4πϵ0

qiqj
rij

,

where qi and qj are the charges of particles i and j, and rij is the distance between them

▶ when the units of charges, distances, and energies are elementary charge, nm, and kJ
mol−1

Uelec = 138.9 · qiqj
rij
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Van der Waals potential energy

▶ Lennard-Jones potential

UvdW(rij) = 4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
,

where ϵij is the well depth and σij is the distance at which the potential is zero

▶ Lorentz-Berthelot combining rules

i j

(ϵi, σi) (ϵj, σj)
r

ϵij =
√
ϵiϵj , σij =

σi + σj

2
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Van der Waals potential energy

▶ example O-O interaction between water molecules

ϵ = 0.426768 kJ mol−1, σ = 0.318799 nm

▶ at what distance is the potential energy zero or minimum?

▶ attractive at long distances and repulsive at short distances
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Range of interactions

▶ bond stretching, angle bending, and torsion are only among atoms that are bonded

▶ van der Waals and electrostatic interactions are among all pairs of atoms, excluding atoms
that are connected by 1 and 2 bonds

▶ van der Waals interactions are short-ranged, reducing to zero much faster than Coulombic
interactions

▶ Coulombic interactions are long-ranged, reducing to zero as 1/r

▶ in practice, van der Waals interactions are often truncated at a cutoff distance

▶ because of the long-range nature of Coulombic interactions, special techniques are needed
to evaluate them efficiently and accurately
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Relative strength of interactions

▶ kb for bond stretching is on the order of 105 kJ mol−1 nm−2

▶ kθ for angle bending is on the order of 102 kJ mol−1 rad−2

▶ kϕ for torsion is on the order of 101 kJ mol−1

▶ bonds are the stiffest, followed by angles, and then torsions

▶ in terms of fluctuations, the bond length fluctuates the least, followed by the angle, and
then the torsion

▶ for many bonds and angles, their distributions can be well approximated by Gaussian
distributions

▶ torsion distributions can be multimodal
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Relative strength of interactions

▶ non-bonded interactions, such as van der Waals and electrostatic interactions, are much
weaker than bonded interactions

▶ there are much more non-bonded interactions than bonded interactions

▶ electrostatic interactions are stronger than van der Waals interactions

▶ repulsive and attractive electrostatic interactions can partially cancel each other out when
charges with opposite signs are close to each other, leading to a net weaker interaction
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Periodic boundary conditions

▶ the number of atoms in a typical bulk system is on the order of 1023

▶ that is far larger than what can be simulated with current computers

▶ the trick is to approximate a bulk system by a small system with periodic boundary
conditions

▶ the small system is periodically replicated in all three dimensions
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Periodic boundary conditions

▶ atoms in a relatively small unit cell are
explicitly represented in the simulation

▶ the unit cell is replicated in all three
dimensions, creating an infinite lattice;
each atom in the unit cell is just one of
many identical atoms in the lattice

▶ assume the unit cell is a box with side
length L, an atom at position (x, y, z)
means there are also same atoms at
positions (x+ nL, y +mL, z + pL) for all
integers n, m, and p
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Periodic boundary conditions

▶ when an atom moves outside a unit cell, another
copy of it enters the unit cell from the opposite side

▶ the unit cell can have any shape that can be
replicated in all three dimensions to form a lattice,
such as a cube, a rectangular box, or a
parallelepiped, etc.

▶ in some applications, the unit cell is only replicated
in one or two dimensions, creating a 1D or 2D
lattice.

▶ 2D lattices are often used to model cell membranes
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Nonbonded interactions in periodic boundary conditions

▶ an atom in a unit cell interact with other atoms
in the same unit cell and with all atoms in all
other unit cells

▶ van der Waals interactions are short-ranged
and often truncated at a cutoff distance

▶ electrostatic interactions are long-ranged and
using a cutoff distance can lead to substantial
errors

▶ the Ewald summation method is used to
evaluate long-range electrostatic interactions in
a periodic system
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Commonly used all-atom classical force fields for biomolecules

▶ CHARMM (Chemistry at HARvard Macromolecular Mechanics)

▶ AMBER (Assisted Model Building with Energy Refinement)

▶ OPLS-AA/M force field for proteins
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https://mackerell.umaryland.edu/charmm_ff.shtml
https://ambermd.org/AmberModels.php
https://traken.chem.yale.edu/oplsaam.html


Software for computing potential energy and forces

▶ OpenMM

▶ CHARMM

▶ AMBER

▶ GROMACS

▶ NAMD

(ML ∪ MD) ∩ Biophysics Ding 7.21

https://openmm.org/
https://academiccharmm.org/
https://ambermd.org/
https://www.gromacs.org/
https://www.ks.uiuc.edu/Research/namd/

