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Statistical mechanics

▶ a mathematical framework that applies statistical methods and
probability theory to large assemblies of microscopic entities

▶ studies physical systems that consist of a large number of entities,
such as atoms, molecules, or others

▶ aims to explain the macroscopic properties of the system without
having to solve the detailed dynamics of all the entities

▶ provides a bridge between the microscopic world and the
macroscopic world
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Important concepts

▶ system - the collection of entities under consideration

▶ environment - everything outside the system

▶ microstate - the complete specification of the state of the system.

– in quantum mechanics, a microstate is a quantum state of the
system, characterized by a wave function

– in classical mechanics, a microstate is the complete specification of
the positions and velocities of all the entities

– will use the quantum mechanical definition of microstate until
otherwise stated

▶ the i-th microstate of the system is denoted by |i⟩
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An example system

Gas in a container

▶ the system consists of a large number of gas molecules

▶ in quantum mechanics, a microstate is a quantum state of the
system specified by a wave function

▶ in classical mechanics, a microstate is the complete specification of
the positions and velocities of all the molecules, i.e., a vector of 6N
numbers where N is the number of molecules
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Postulates of statistical mechanics

▶ a system with fixed number of particles N , volume V , and energy E
is equally likely to be found in any of its microstates

▶ over a long time period, the system spends equal amount of time in
each of its microstates
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Entropy

▶ Ω(E, V,N) - the number of microstates of the system with energy
E, volume V , and number of particles N

▶ entropy S of the system is defined as

S(E, V,N) = kB lnΩ(E, V,N)

where kB is the Boltzmann constant

▶ when two subsystems are combined with no interactions into one
system

E1, V1, N1 E2, V2, N2

– Ωtotal = Ω1 · Ω2

– Stotal = S1 + S2
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Temperature

▶ when two subsystems are combined and allowed to exchange energy

E1 E − E1

(E, V,N)

▶ E1 is the energy of the first subsystem and varies among the
microstates of the system

▶ Ω(E1, E − E1) - the number of microstates of the system when the
first subsystem has energy E1 and the second subsystem has energy
E − E1

▶ Ω(E1, E − E1) = Ω1(E1) · Ω2(E − E1)

▶ lnΩ(E1, E − E1) = lnΩ1(E1) + lnΩ2(E − E1)
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Temperature

▶ when two subsystems are combined and allowed to exchange energy

E1 E − E1

(E, V,N)

▶ what is the most probable value of E1

▶ each microstate is equally likely, so the most probable value of E1 is
the one that maximizes Ω(E1, E − E1), or equivalently, maximizes
lnΩ(E1, E − E1)(

∂ lnΩ(E1, E − E1)

∂E1

)
N,V,E

= 0
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Temperature

▶ find the most probable value of E1 by maximizing lnΩ(E1, E − E1)(
∂ lnΩ(E1, E − E1)

∂E1

)
N,V,E

=

(
∂ lnΩ1(E1)

∂E1

)
N1,V1

+

(
∂ lnΩ2(E − E1)

∂E1

)
N2,V2

=

(
∂ lnΩ1(E1)

∂E1

)
N1,V1

−
(
∂ lnΩ2(E2)

∂E2

)
N2,V2

= 0

▶ the most probable value of E1 is the one that satisfies(
∂ lnΩ1(E1)

∂E1

)
N1,V1

=

(
∂ lnΩ2(E2)

∂E2

)
N2,V2
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Temperature

▶ for a system with energy E, volume V , and number of particles N ,

β(E, V,N) =

(
∂ lnΩ(E, V,N)

∂E

)
N,V

▶ two systems are in thermal equilibrium if

β1(E1, V1, N1) = β2(E2, V2, N2)

▶ the temperature of a system is defined as

1

T
=

(
∂S

∂E

)
V,N

▶ β = 1/(kBT )
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A system in thermal equilibrium with a heat bath

▶ the total system consists of the system and a heat bath

Ei, V,NEB , VB , NB

▶ Ei - the energy of the system when it is in microstate i

▶ EB - the energy of the heat bath

▶ the total energy E = Ei + EB is conserved

▶ what is the probability Pi that the system is in microstate i
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Boltzmann distribution

▶ Pi - the probability that the system is in microstate i

Ei, V,NEB , VB , NB

▶ the microstate of the total system is specified by the microstate of
the system and the microstate of the heat bath

▶ when the system is in microstate i, the heat bath can be in any of
its microstates with energy EB = E − Ei

▶ Pi is proportional to the number of microstates of the heat bath
with energy EB = E − Ei because the total system is equally likely
to be in any of its microstates
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Boltzmann distribution

▶ Pi - the probability that the system is in microstate i

Ei, V,NEB , VB , NB

▶ Pi ∝ ΩB(E − Ei)

▶ Pi needs to be normalized so that
∑

i Pi = 1

Pi =
ΩB(E − Ei)∑
j ΩB(E − Ej)
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Boltzmann distribution

▶ Pi - the probability that the system is in microstate i

Pi =
ΩB(E − Ei)∑
j ΩB(E − Ej)

▶ to compute ΩB(E − Ei), expand lnΩB(E − Ei) around Ei = 0

lnΩB(E − Ei) = lnΩB(E)− Ei ·
∂ lnΩB(E)

∂E
+ · · ·

▶ the Boltzmann distribution

Pi =
exp(−βEi)∑
j exp(−βEj)

=
exp(−Ei/kBT )∑
j exp(−Ej/kBT )

where T is the temperature of the heat bath

▶ after reaching thermal equilibrium, the system has temperature T
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Partition function

▶ for a system with fixed N,V, T , its partition function is defined as

Q =
∑
j

exp(−βEj)

▶ the probability that the system is in microstate i is

Pi =
exp(−βEi)

Q

▶ the average energy of the system is

⟨E⟩ =
∑
i

EiPi =

∑
i Ei exp(−βEi)

Q
= −∂ lnQ

∂β

▶ the Helmholtz free energy of the system is

F = −kBT lnQ
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Observables

▶ in quantum mechanics, an observable A is represented by an operator
and its value when the system is in microstate i is ⟨A⟩i = ⟨i|A|i⟩

▶ the average value of the observable A is

⟨A⟩ =
∑

i exp(−Ei/kBT )⟨i|A|i⟩∑
j exp(−Ej/kBT )
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Classical statistical mechanics

▶ in classical mechanics, the microstate of the system is specified by
the positions and momenta of all the particles {r1,p1, r2,p2, . . .}

▶ the phase space of the system is the space of all possible microstates

▶ given a microstate, the energy of the system consists of a kinetic
energy term and a potential energy term

E(r1,p1, r2,p2, . . .) = K(p1,p2, . . .) + U(r1, r2, . . .)

▶ the probability density of the system in phase space is

ρ(r1,p1, r2,p2, . . .) =
exp(−βE)

Q

▶ the partition function is defined as

Q =

∫
exp(−βE) dr1 dp1 dr2 dp2 . . .
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Classical statistical mechanics

▶ because E(r1,p1, r2,p2, . . .) = K(p1,p2, . . .) + U(r1, r2, . . .) is a
sum of two terms that depend on {r1, r2, . . .} and {p1,p2, . . .}
separately, the probability density can be written as

ρ(r1,p1, r2,p2, . . .) = ρpos(r1, r2, . . .) · ρmom(p1,p2, . . .),

where

ρpos(r1, r2, . . .) =
exp(−βU)

Qpos
; ρmom(p1,p2, . . .) =

exp(−βK)

Qmom

▶ the partition function can be written as Q = Qpos ·Qmom where

Qpos =

∫
exp(−βU) dr1 dr2 . . .

Qmom =

∫
exp(−βK) dp1 dp2 . . .
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Classical statistical mechanics

▶ in many cases, we are mostly interested in the positions of the
particles and not their momenta

▶ the Boltzmann distribution on the positions of the particles is

P (r1, r2, . . .) =
exp(−βU(r1, r2, . . .))

Qpos
,

where Qpos =
∫
exp(−βU) dr1 dr2 . . .

▶ the average value of an observable A is

⟨A⟩ =
∫
exp(−βU)A(r1, r2, . . .) dr1 dr2 . . .∫

exp(−βU) dr1 dr2 . . .
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