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Model selection

▶ two models, A and B, are learned on the same training dataset.

▶ model A has an error of 0.1 on the training set and model B has an
error of 1.0.

▶ which model is better?

▶ answer: unknown.

▶ training error is not a good metric for comparing and selecting
models
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Test error

▶ to compare models, we need to evaluate them on a test set

▶ the error on the test set is called the test error

▶ measures whether the model generalizes to well to unseen data

▶ the ultimate goal of machine learning is to minimize the test error,
not the training error.

▶ minimizing the training error is merely an approach towards the goal.

▶ reducing the training error does not necessarily always reduce the
test error

▶ can be decomposed into three components: bias, variance, and
irreducible error
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Underfits and overfits

▶ underfits

– when both the training and test errors are high
– cannot make accurate predictions on the training set
– model being too simple to capture the underlying structure of the

data

▶ overfits

– when the training error is much lower than the test error
– make accurate predictions on the training set but not on the test set
– model being too flexible and captures noise in the training data

▶ both are related to the bias-variance decomposition of the test error
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Bias-variance tradeoff

▶ an example of regression from
https://cs229.stanford.edu/main_notes.pdf

▶ the ground true: y(i) = h∗(x(i)) + ξ(i)

▶ h∗ is a quadratic function and ξ(i) ∼ N(0, σ2) is the noise.

▶ goal: learn a model h(x) to approximate h∗ using training data
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Underfits

▶ fit a linear model with limited noisy data

▶ both training and test errors are large
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Underfits

▶ fit a linear model with more or noiseless data

▶ using more training data does not help reduce either error

▶ the bias of a model is the test error when the model is trained on a
very (infinitely) large training set

▶ models that underfit the data have high bias
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Overfits

▶ fit a 5-th degree polynomial with noisy data

▶ very small (zero) training error but large test error

▶ the model is so flexible that it even fits the patterns in training data
that is due to noise
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Overfits

▶ fit a 5-th degree polynomial on different training sets

▶ the model fits the noise in the training set, but the noise could be
different in different training sets

▶ the variance of a model is the amount of variations across models
trained on different training sets
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Overfits

▶ fit a 5-th degree polynomial with more data

▶ large training set helps reduce the variance of the model
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Bias-variance tradeoff

model complexity

er
ro
r

bias2

variance
test error
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The bias-variance decomposition for regression

▶ Draw a training dataset S = {(x(i), y(i))}ni=1 such that
y(i) = h⋆(x(i)) + ξ(i) where ξ(i) ∈ N(0, σ2)

▶ Train a model on the dataset S, denoted by ĥS .

▶ Take a test example (x, y) such that y = h⋆(x) + ξ where
ξ ∼ N(0, σ2),

▶ the expected test error (averaged over the random draw of the
training set S and the randomness of ξ):

MSE(x) = ES,ξ

[
(y − hS(x))

2
]
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The bias-variance decomposition

▶ conceptually useful for understanding what contributes to test error

MSE(x) = E
[
(y − ĥS(x))

2
]

= E
[(

ξ +
(
h⋆(x)− ĥS(x)

))2
]

= E
[
ξ2
]
+ E

[(
h⋆(x)− ĥS(x)

)2
]

= σ2 + E
[(

h⋆(x)− ĥS(x)
)2

]
= σ2︸︷︷︸

unavoidable

+(h⋆(x)− havg(x))
2︸ ︷︷ ︸

≜ bias2

+E
[(

havg(x)− ĥS(x)
)2

]
︸ ︷︷ ︸

≜ variance

▶ in practice, the bias and variance are not directly computable
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Model selection in practice

▶ in practice, we do not have access to the true underlying function h⋆

▶ when training data is limited, we cannot estimate havg(x) or
var(hS(x)) accurately

▶ the bias-variance decomposition is a conceptual tool for
understanding the test error

▶ there are more practical ways to estimate the test error and select
models
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Model selection in practice

▶ the most common approach is to split the dataset into training,
validation, and test sets

Train Validation Test

▶ the training set is used to train models

▶ the validation set is used to estimate the test error and select models

▶ the test set is used to evaluate the final model; should be kept in a
“vault” and be brought out only at the end of evaluating the model

▶ if the test set is used repeatedly to select models with smallest test
error, the test error of the final chosen model will underestimate the
true test error
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Bias-variance tradeoff

▶ find the right balance between bias and variance

model complexity

er
ro
r

bias2

variance
test error
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Model complexity

▶ intuitively, model complexity could be measured by the number of
parameters, such as the degree of a polynomial, the number of layers
and nodes in a neural network etc.

▶ model complexity is better measured by functions of the parameters,
such as the norm of the parameters

▶ regularization is a technique to control the complexity of the model
and prevent overfitting
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Regularization

▶ regularization is a technique to prevent overfitting by adding a
penalty term to the loss function

▶ the regularized loss function Jλ(θ)

Jλ(θ) = J(θ) + λR(θ)

▶ J(θ) is the original loss function

▶ λ ≥ 0 is the regularization parameter

▶ R(θ) is a non-negative function of the parameters measuring the
complexity of the model
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Regularization

▶ regularized loss function

Jλ(θ) = J(θ) + λR(θ)

▶ the regularized loss function is optimized instead of the original loss
function

▶ the regularization parameter λ controls the tradeoff between the
original loss and the regularization term

▶ when λ = 0, the regularized loss is the same as the original loss

▶ when λ→∞, the regularized loss is dominated by the regularization
term
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ℓ2 regularization

▶ ℓ2 regularization is the most common form of regularization

▶ the regularization term is the squared norm of the parameters

R(θ) =
1

2

m∑
j=1

θ2j

▶ also known as weight decay

θ ← θ − η∇Jλ(θ)
= θ − ηλθ − η∇J(θ)
= (1− λη)θ︸ ︷︷ ︸

decaying weights

−η∇J(θ)

▶ it penalizes large weights and pushes the weights towards zero

(ML ∪ MD) ∩ Biophysics Ding 5.21



ℓ2 regularization

▶ most optimization libraries have built-in support for ℓ2 regularization

torch.optim.SGD(params, lr=0.001, momentum=0, ...,

weight_decay=0, ...)

torch.optim.Adam(params, lr=0.001, ...,

weight_decay=0, ...)

optax.adamw(...) # Adam with weight decay regularization.
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ℓ1 regularization

▶ another form of regularization

▶ uses the sum of the absolute values of the parameters

R(θ) =

m∑
j=1

|θj |

▶ encourages sparsity in parameters and is useful for feature selection

▶ not differentiable at zero, so special optimization techniques are
needed

▶ best known example: LASSO (Least Absolute Shrinkage and
Selection Operator)
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Choose λ via cross-validation

▶ λ controls the tradeoff between the original loss and the
regularization term

▶ split the training set into training and validation sets

▶ train the model with different values of λ on the training set

▶ evaluate the model on the validation set

▶ choose the λ that gives the best performance on the validation set

▶ retrain the model on the entire training set with the chosen λ

▶ evaluate the model on the test set

▶ the test set should not be used to select the λ
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k-fold cross-validation

▶ the training set is split into k equal-sized folds

▶ each fold is used as the validation set once

▶ the model is trained on the remaining k − 1 folds

▶ the average performance across all folds is used to select the λ

▶ more computationally expensive but gives a more reliable estimate of
the performance

▶ k = 5 or k = 10 are common choices

▶ k = n is called leave-one-out cross-validation
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