5. Generalization and regularization

Outline

Generalization

Regularization

 $(ML \cup MD) \cap Biophysics$

Model selection

- **b** two models, A and B, are learned on the same training dataset.
- model A has an error of 0.1 on the training set and model B has an error of 1.0.
- which model is better?

Model selection

- **b** two models, A and B, are learned on the same training dataset.
- model A has an error of 0.1 on the training set and model B has an error of 1.0.
- which model is better?
- answer: unknown.
- training error is not a good metric for comparing and selecting models

Test error

- to compare models, we need to evaluate them on a test set
- the error on the test set is called the test error
- measures whether the model generalizes to well to unseen data
- the ultimate goal of machine learning is to minimize the test error, not the training error.
- minimizing the training error is merely an approach towards the goal.
- reducing the training error does not necessarily always reduce the test error
- can be decomposed into three components: bias, variance, and irreducible error

 $(ML \cup MD) \cap Biophysics$

Underfits and overfits

underfits

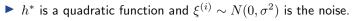
- when both the training and test errors are high
- cannot make accurate predictions on the training set
- model being too simple to capture the underlying structure of the data

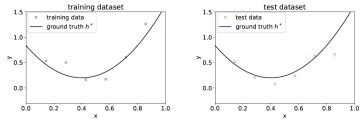
overfits

- when the training error is much lower than the test error
- make accurate predictions on the training set but not on the test set
- model being too flexible and captures noise in the training data
- both are related to the bias-variance decomposition of the test error

Bias-variance tradeoff

- an example of regression from https://cs229.stanford.edu/main_notes.pdf
- the ground true: $y^{(i)} = h^*(x^{(i)}) + \xi^{(i)}$





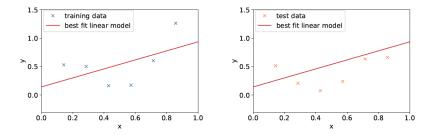
• goal: learn a model h(x) to approximate h^* using training data

$(ML \cup MD) \cap Biophysics$

Ding

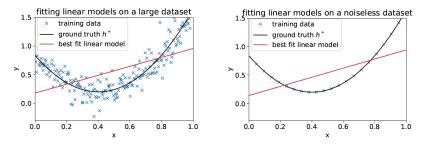
Underfits

fit a linear model with limited noisy data



both training and test errors are large

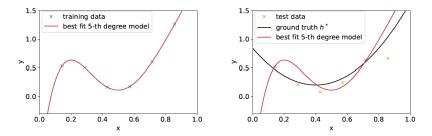
Underfits



using more training data does not help reduce either error

- the bias of a model is the test error when the model is trained on a very (infinitely) large training set
- models that underfit the data have high bias

Overfits

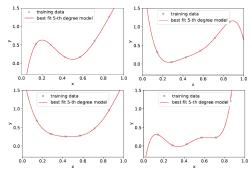


very small (zero) training error but large test error

the model is so flexible that it even fits the patterns in training data that is due to noise

Overfits

fit a 5-th degree polynomial on different training sets



the model fits the noise in the training set, but the noise could be different in different training sets

the variance of a model is the amount of variations across models trained on different training sets

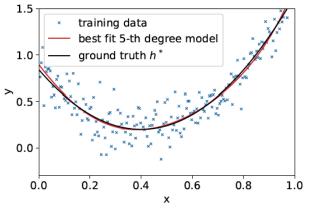
 $(ML \cup MD) \cap Biophysics$

Ding

Overfits

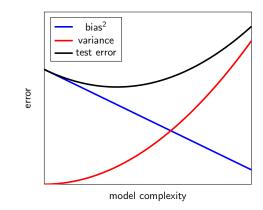
fit a 5-th degree polynomial with more data

fitting 5-th degree model on large dataset



► large training set helps reduce the variance of the model $(ML \cup MD) \cap Biophysics$ Ding

Bias-variance tradeoff



The bias-variance decomposition for regression

- ▶ Draw a training dataset $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$ such that $y^{(i)} = h^\star(x^{(i)}) + \xi^{(i)}$ where $\xi^{(i)} \in N(0, \sigma^2)$
- Train a model on the dataset S, denoted by \hat{h}_S .
- Take a test example (x, y) such that $y = h^{\star}(x) + \xi$ where $\xi \sim N(0, \sigma^2)$,
- the expected test error (averaged over the random draw of the training set S and the randomness of ξ):

$$\mathsf{MSE}(x) = \mathbb{E}_{S,\xi} \left[(y - h_S(x))^2 \right]$$

The bias-variance decomposition

conceptually useful for understanding what contributes to test error

$$\begin{split} \mathsf{MSE}(x) &= \mathbb{E}\left[(y - \hat{h}_S(x))^2 \right] \\ &= \mathbb{E}\left[\left(\xi + \left(h^*(x) - \hat{h}_S(x) \right) \right)^2 \right] \\ &= \mathbb{E}\left[\xi^2 \right] + \mathbb{E}\left[\left(h^*(x) - \hat{h}_S(x) \right)^2 \right] \\ &= \sigma^2 + \mathbb{E}\left[\left(h^*(x) - \hat{h}_S(x) \right)^2 \right] \\ &= \underbrace{\sigma^2}_{\mathsf{unavoidable}} + \underbrace{(h^*(x) - h_{\mathsf{avg}}(x))^2}_{\triangleq \mathsf{bias}^2} + \underbrace{\mathbb{E}\left[\left(h_{\mathsf{avg}}(x) - \hat{h}_S(x) \right)^2 \right]}_{\triangleq \mathsf{variance}} \end{split}$$

▶ in practice, the bias and variance are not directly computable

 $(ML \cup MD) \cap Biophysics$

Ding

Model selection in practice

- \blacktriangleright in practice, we do not have access to the true underlying function h^{\star}
- when training data is limited, we cannot estimate h_{avg}(x) or var(h_S(x)) accurately
- the bias-variance decomposition is a conceptual tool for understanding the test error
- there are more practical ways to estimate the test error and select models

Model selection in practice

the most common approach is to split the dataset into training, validation, and test sets

- the training set is used to train models
- the validation set is used to estimate the test error and select models
- the test set is used to evaluate the final model; should be kept in a "vault" and be brought out only at the end of evaluating the model
- if the test set is used repeatedly to select models with smallest test error, the test error of the final chosen model will underestimate the true test error

 $(ML \cup MD) \cap Biophysics$

Outline

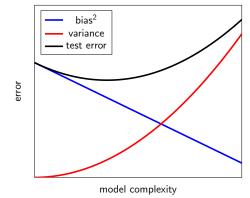
Generalization

Regularization

 $(ML \cup MD) \cap Biophysics$

Bias-variance tradeoff

find the right balance between bias and variance



Model complexity

- intuitively, model complexity could be measured by the number of parameters, such as the degree of a polynomial, the number of layers and nodes in a neural network etc.
- model complexity is better measured by functions of the parameters, such as the norm of the parameters
- regularization is a technique to control the complexity of the model and prevent overfitting

Regularization

regularization is a technique to prevent overfitting by adding a penalty term to the loss function

• the regularized loss function $J_{\lambda}(\theta)$

$$J_{\lambda}(\theta) = J(\theta) + \lambda R(\theta)$$

- $\blacktriangleright \ J(\theta)$ is the original loss function
- $\blacktriangleright \ \lambda \geq 0$ is the regularization parameter
- $\blacktriangleright R(\theta)$ is a non-negative function of the parameters measuring the complexity of the model

Regularization

regularized loss function

$$J_{\lambda}(\theta) = J(\theta) + \lambda R(\theta)$$

- the regularized loss function is optimized instead of the original loss function
- \blacktriangleright the regularization parameter λ controls the tradeoff between the original loss and the regularization term
- when $\lambda = 0$, the regularized loss is the same as the original loss
- \blacktriangleright when $\lambda \rightarrow \infty,$ the regularized loss is dominated by the regularization term

ℓ_2 regularization

 \blacktriangleright ℓ_2 regularization is the most common form of regularization

the regularization term is the squared norm of the parameters

$$R(\theta) = \frac{1}{2} \sum_{j=1}^{m} \theta_j^2$$

also known as weight decay

$$\begin{split} \theta &\leftarrow \theta - \eta \nabla J_{\lambda}(\theta) \\ &= \theta - \eta \lambda \theta - \eta \nabla J(\theta) \\ &= \underbrace{(1 - \lambda \eta)\theta}_{\text{decaying weights}} - \eta \nabla J(\theta) \end{split}$$

it penalizes large weights and pushes the weights towards zero

 $(ML \cup MD) \cap Biophysics$

Ding

ℓ_2 regularization

most optimization libraries have built-in support for l₂ regularization torch.optim.SGD(params, lr=0.001, momentum=0, ..., weight_decay=0, ...)

```
torch.optim.Adam(params, lr=0.001, ...,
weight_decay=0, ...)
```

optax.adamw(...) # Adam with weight decay regularization.

ℓ_1 regularization

- another form of regularization
- uses the sum of the absolute values of the parameters

$$R(\theta) = \sum_{j=1}^{m} |\theta_j|$$

- encourages sparsity in parameters and is useful for feature selection
- not differentiable at zero, so special optimization techniques are needed
- best known example: LASSO (Least Absolute Shrinkage and Selection Operator)

Choose λ via cross-validation

- \blacktriangleright λ controls the tradeoff between the original loss and the regularization term
- split the training set into training and validation sets
- \blacktriangleright train the model with different values of λ on the training set
- evaluate the model on the validation set
- choose the λ that gives the best performance on the validation set
- \blacktriangleright retrain the model on the entire training set with the chosen λ
- evaluate the model on the test set
- \blacktriangleright the test set should not be used to select the λ

 $(ML \cup MD) \cap Biophysics$

k-fold cross-validation

the training set is split into k equal-sized folds

- each fold is used as the validation set once
- the model is trained on the remaining k-1 folds
- \blacktriangleright the average performance across all folds is used to select the λ
- more computationally expensive but gives a more reliable estimate of the performance
- ▶ k = 5 or k = 10 are common choices
- \blacktriangleright k = n is called leave-one-out cross-validation