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Problem setup

I example: classifying emails as spam or not spam

I features: words in email, sender, etc.

I response: spam or not spam

I goal: learn a model that predicts spam from features

I training data: pairs of features and labels

I It is similar to linear regression, but the response variable is binary.
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Logistic regression model

I data:
{(x(i), y(i)) | i = 1, · · · ,n},

I x(i) ∈ Rd+1 is the augmented feature vector

I y(i) ∈ {0, 1} is the label variable

I logistic model (hypothesis):

P(y = 1|x; θ) = h(x; θ) = 1
1 + e−(θ0+θ1x1+···+θdxd)

=
1

1 + e−θT x
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The logistic function

I also called the sigmoid functions:

g(z) = 1
1 + e−z

I g′(z) = g(z) · (1 − g(z))
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Maximum likelihood estimation

I probability of observing y given x

P(y = 1|x; θ) = h(x; θ)
P(y = 0|x; θ) = 1 − h(x; θ)

I write it compactly

P(y|x; θ) = (h(x; θ))y(1 − h(x; θ))1−y
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Maximum likelihood estimation

I likelihood of all data

L(θ) =
n∏

i=1
P(y(i)|x(i); θ) =

n∏
i=1

(h(x(i); θ))y(i)
(1 − h(x(i); θ))1−y(i)

I log-likehood:

`(θ) = logL(θ) =
n∑

i=1
y(i) log h(x(i); θ)+(1−y(i)) log(1−h(x(i); θ))

I gradient ascent to maximize 1
n `(θ)

θj := θj + α · 1
n
∂`(θ)

∂θj
= θj + α · 1

n

n∑
i=1

(
y(i) − h(x(i), θ)

)
x(i)

j
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Multi-class classification

I data: {(x(i), y(i)) | i = 1, · · · ,n},

I x(i) ∈ Rd+1 is the augmented feature vector

I y(i) ∈ {1, 2, · · · ,m} is the label variable

I softmax model (hypothesis)

P(y = k|x; θ) ∝ eθ
T
k x

P(y = k|x; θ) = eθT
k x∑m

j=1 eθT
j x

I θk ∈ Rd+1 is the parameter vector for class k
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Softmax function

I generalization of the logistic function

P(y = k|x; θ) = eθT
k x∑m

j=1 eθT
j x

I degeneracy in θ

P(y = k|x; θ) = e(θk−θm)T x∑m
j=1 e(θj−θm)T x

I multiple choices of θ that give the same probability

I to remove the degeneracy, fix θm = 0
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Maximum likelihood estimation

I likelihood of a single data point

P(y(i)|x(i); θ) =

m∏
k=1

(P(y = k|x(i); θ))1{y(i)=k}

I log-likelihood of a single data point

`(θ) =

m∑
k=1

1{y(i) = k} logP(y = k|x(i); θ)

I log-likelihood of all data

`(θ) =

n∑
i=1

m∑
k=1

1{y(i) = k} logP(y = k|x(i); θ)

I gradient ascent to maximize `(θ)/n
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