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Problem setup

I example: predicting house prices from features
I features: size, number of bedrooms, etc.
I response: price
I goal: learn a model that predicts price from features
I training data: pairs of features and prices

Living area (ft2) # Bedrooms Price ($1000s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540

...
...

...

(ML ∪ MD) ∩ Biophysics Ding 2.2



Problem setup

I data:
{(x(i), y(i)) | i = 1, · · · ,n},

I x(i) ∈ Rd is a feature vector
I y(i) ∈ R is the response variable
I linear model (hypothesis):

h(x; θ) = θ0 + θ1x1 + · · ·+ θdxd = θTx

I θ = (θ0, θ1, · · · , θd) ∈ Rd+1 is the parameter vector.
I x = (1, x1, · · · , xd) ∈ Rd+1 is the augmented feature vector.
I objective: learning θ∗ from the data so that h(x; θ∗) predicts y well.
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Loss function

I squared loss:

J (θ) = 1
2n

n∑
i=1

(
h(x(i), θ)− y(i)

)2

I learn θ∗ by minimizing J (θ).
I this is called ordinary least squares (OLS) regression model.
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Solve the OLS problem

I solve for θ∗ that minimizes J (θ).

θ

J (θ)

θ∗

J (θ∗)

I J (θ) is a convex function of θ.
I J (θ) has a shape like a bowl with a single minimum point.
I analytical solution
I gradient descent
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Analytical solution

I express J (θ) using matrix notation:

J (θ) = 1
2n

(Xθ − y)T(Xθ − y),

where X is the design matrix and y is the response vector.

I differentiate J (θ) with respect to θ and set to zero:

∂J (θ)
∂θ

=
1
n

XT(Xθ − y).

I the normal equation
XTXθ = XTy,

I solve for θ∗
θ∗ = (XTX)−1XTy.
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Computing the analytical solution

I it is attempting to directly use θ∗ = (XTX)−1XTy to compute θ∗

I not recommended because it involves inverting a matrix

I in practice, direct matrix inversion is rarely used

I alternative methods that are numerically more stable are used

I they often involve matrix factorization techniques

I QR decomposition, SVD, Cholesky decomposition

(ML ∪ MD) ∩ Biophysics Ding 2.8



Computing the analytical solution

I QR decomposition: X = QR

I Q is an orthonormal matrix, i.e., QTQ = I

I R is an upper triangular matrix

I θ∗ = R−1QTy ⇐⇒ Rθ∗ = QTy

I Q, R = jnp.linalg.qr(x)
theta_qr = jax.scipy.linalg.solve_triangular(R, Q.T @ y)
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Gradient descent

I update rule:

θj := θj − α
∂J (θ)
∂θj

,

for all j = 0, 1, · · · , d.
I α is the learning rate.
I repeat until convergence. θ

J (θ)

θ∗

J (θ∗)
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Probabilistic interpretation

I the loss function J (θ) can be derived from the a probabilistic model

I assume the observed response y(i) is generated by

y(i) = θTx(i) + ε(i),

where ε ∼ N (0, σ2) is the noise term

I the likelihood of y(i) given x(i):

p(y(i)|x(i); θ) = N (y(i)|θTx(i), σ2)

I the maximum likelihood estimation (MLE) of θ is equivalent to
minimizing J (θ)
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Maximum likelihood estimation

I data: {(x(i), y(i)) | i = 1, · · · ,n},

I likelihood for y(i)

p(y(i)|x(i); θ) =
1√
2πσ

exp

(
− 1

2σ2

(
y(i) − θTx(i)

)2
)

I likelihood function for all data

L(θ) =
n∏

i=1
p(y(i)|x(i); θ) =

n∏
i=1

1√
2πσ

exp

(
− 1

2σ2

(
y(i) − θTx(i)

)2
)
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Maximum likelihood estimation

I log-likelihood function

`(θ) = logL(θ) = −n
2
log(2πσ2)− 1

2σ2

n∑
i=1

(
y(i) − θTx(i)

)2

I MLE of θ: θ∗ that maximizes `(θ)

θ∗ = argmax
θ

`(θ)

I maximizing `(θ) is equivalent to minimizing J (θ)

(ML ∪ MD) ∩ Biophysics Ding 2.14



Tutorial

Linear regression tutorial
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https://dinglab.io/chem193/tutorial/linear-regression.html

