2. Linear Regression

Outline

Problem setup

Solve the OLS problem

Probabilistic interpretation

Problem setup

- example: predicting house prices from features
- *features*: size, number of bedrooms, etc.
- ► *response*: price
- goal: learn a model that predicts price from features
- training data: pairs of features and prices

Living area (ft 2)	# Bedrooms	Price (\$1000s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:		
:		•

Problem setup

data:

$$\{(x^{(i)}, y^{(i)}) \mid i = 1, \cdots, n\},\$$

x⁽ⁱ⁾ ∈ R^d is a *feature* vector
y⁽ⁱ⁾ ∈ R is the *response* variable *linear* model (*hypothesis*): h(x; θ) = θ₀ + θ₁x₁ + ··· + θ_dx_d = θ^Tx
θ = (θ₀, θ₁, ··· , θ_d) ∈ R^{d+1} is the *parameter* vector.
x = (1, x₁, ··· , x_d) ∈ R^{d+1} is the *augmented* feature vector.

• objective: learning θ^* from the data so that $h(x; \theta^*)$ predicts y well.

Loss function

squared loss:

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h(x^{(i)}, \theta) - y^{(i)} \right)^2$$

learn
$$\theta^*$$
 by minimizing $J(\theta)$.

▶ this is called *ordinary least squares* (OLS) regression model.

Outline

Problem setup

Solve the OLS problem

Probabilistic interpretation

Solve the OLS problem

▶ solve for θ^* that minimizes $J(\theta)$.

- $J(\theta)$ is a *convex* function of θ .
- $J(\theta)$ has a shape like a *bowl* with a single *minimum point*.
- analytical solution
- gradient descent

Analytical solution

• express $J(\theta)$ using matrix notation:

$$J(\theta) = \frac{1}{2n} (X\theta - y)^T (X\theta - y),$$

where X is the design matrix and y is the response vector.

• differentiate $J(\theta)$ with respect to θ and set to zero:

$$\frac{\partial J(\theta)}{\partial \theta} = \frac{1}{n} X^T (X\theta - y).$$

the normal equation

$$X^T X \theta = X^T y,$$

 \blacktriangleright solve for θ^*

$$\theta^* = (X^T X)^{-1} X^T y.$$

 $(ML \cup MD) \cap Biophysics$

Ding

Computing the analytical solution

▶ it is attempting to directly use $\theta^* = (X^T X)^{-1} X^T y$ to compute θ^*

- not recommended because it involves inverting a matrix
- in practice, direct matrix inversion is rarely used
- alternative methods that are numerically more stable are used
- they often involve matrix factorization techniques
- ▶ QR decomposition, SVD, Cholesky decomposition

Computing the analytical solution

- ▶ QR decomposition: X = QR
- Q is an orthonormal matrix, i.e., $Q^T Q = I$
- R is an upper triangular matrix

$$\bullet \ \theta^* = R^{-1}Q^T y \iff R\theta^* = Q^T y$$

Q, R = jnp.linalg.qr(x)
theta_qr = jax.scipy.linalg.solve_triangular(R, Q.T @ y)

Gradient descent

update rule:

$$\theta_j := \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j},$$

- for all $j = 0, 1, \cdots, d$.
- $\blacktriangleright \alpha$ is the *learning rate*.
- repeat until convergence.

Outline

Problem setup

Solve the OLS problem

Probabilistic interpretation

Probabilistic interpretation

- \blacktriangleright the loss function $J(\theta)$ can be derived from the a probabilistic model
- \blacktriangleright assume the observed response $y^{(i)}$ is generated by

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)},$$

where $\epsilon \sim \mathcal{N}(0,\sigma^2)$ is the noise term

▶ the likelihood of $y^{(i)}$ given $x^{(i)}$:

$$p(y^{(i)}|x^{(i)};\theta) = \mathcal{N}(y^{(i)}|\theta^T x^{(i)},\sigma^2)$$

the maximum likelihood estimation (MLE) of θ is equivalent to minimizing J(θ)

Maximum likelihood estimation

• data:
$$\{(x^{(i)}, y^{(i)}) \mid i = 1, \cdots, n\},\$$

 \blacktriangleright likelihood for $y^{(i)}$

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} \left(y^{(i)} - \theta^T x^{(i)}\right)^2\right)$$

likelihood function for all data

$$L(\theta) = \prod_{i=1}^{n} p(y^{(i)}|x^{(i)};\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} \left(y^{(i)} - \theta^T x^{(i)}\right)^2\right)$$

 $(ML \cup MD) \cap Biophysics$

Ding

Maximum likelihood estimation

log-likelihood function

$$\ell(\theta) = \log L(\theta) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n \left(y^{(i)} - \theta^T x^{(i)}\right)^2$$

• MLE of θ : θ^* that maximizes $\ell(\theta)$

$$\theta^* = \arg \max_{\theta} \ell(\theta)$$

• maximizing $\ell(\theta)$ is equivalent to minimizing $J(\theta)$

Tutorial

Linear regression tutorial