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Multiple sequence alignment

▶ multiple sequence alignment (MSA) is sequence alignment of three or more biological
sequences such as DNA, RNA, or protein

▶ an example protein MSA
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Multiple sequence alignment

▶ each row of the MSA corresponds to the sequence of a specific protein

▶ each column of the MSA corresponds to a position in the sequence

▶ dash symbol means the sequence does not have an amino acid aligned at that position

▶ protein sequences are in the same MSA are evolutionarily related: they are homologous

▶ homologous sequences are derived from a common ancestor, so they are similar in
sequence, structure, and function
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Multiple sequence alignment

▶ MSA of a protein contains more information than a single sequence

▶ can be used to identify conserved regions in the protein

▶ conserved regions are often important for the protein’s function

▶ used to infer the evolutionary relationships between the sequences

▶ used to search for homologous sequences in a database

▶ used to predict the structure and function of a protein
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Multiple sequence alignment

▶ multiple algorithms exist for constructing MSAs

▶ most algorithms require a query sequence and a database of sequences

▶ they iteratively search for homologous sequences in the database and align them

▶ example algorithms: Clustal Omega, MUSCLE
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Protein family

▶ a protein family is a group of proteins that share a common evolutionary origin

▶ members of a protein family are homologous and have similar sequences, structures, and
functions

▶ sequences of a protein family are aligned to create a multiple sequence alignment

▶ the Pfam database is a collection of protein families
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Probabilistic models in general

▶ data: {x(1), x(2), . . . , x(N)}, where x(i) is a data sample and could be a scale or a vector

▶ a probabilistic model of the data defines a probability distribution P (x; θ)

▶ θ is a set of parameters that define the model

▶ assumes that the observed data are generated by the model, i.e., the data are samples
from the distribution P (x; θ∗)

▶ θ∗ is the true parameter value of the model

▶ learning the model means estimating the parameters θ from the data
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A simple example of probabilistic model

▶ observed data: 0.43, 2.49,−1.91, 0.29,−2.1, 0.44

▶ model:

p(x; θ) =
1√
2πσ2

e−
(x−µ)2

2σ2

▶ θ = (µ, σ2) is the set of parameters

▶ how to estimate θ from the data?
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Maximum likelihood estimation

▶ a general approach to estimate the parameters of a probabilistic model based on the
observed data

▶ estimates the parameters θ by maximizing the likelihood function

L(θ) = P (x(1), x(2), . . . , x(N); θ) =

N∏
i=1

P (x(i); θ)

▶ the estimate θ̂ = argmaxθ L(θ)

▶ it is often easier to maximize the log-likelihood function

ℓ(θ) = logL(θ) =

N∑
i=1

logP (x(i); θ)
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The probability distribution P (x; θ)

▶ an assumption about the data and an approximation of the true distribution

▶ several factors influence the choice of the distribution

– the nature of the data
– the complexity of the model
– the computational cost of estimating the parameters
– the interpretability of the model
– the need of sampling from the distribution or computing the likelihood

▶ by choosing a distribution with inherent structures, we could infer the structures from data
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Example P (x, θ) with varying complexity and structrues

▶ a Gaussian distribution

▶ a mixture of Gaussians

▶ a Gaussian process

▶ a hidden Markov model

▶ the Boltzmann machine

▶ large language models

▶ autoregressive probabilistic models

▶ variational autoencoders

▶ restricted Boltzmann machines

▶ the Ising model

▶ the Potts model

▶ large language models of proteins
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Probabilistic models of MSA

▶ a MSA is a collection of sequences: {x(1), x(2), . . . , x(N)}, where x(i) is a sequence of
amino acids

▶ a probabilistic model of MSA defines a probability distribution P (x; θ)

▶ {x(1), x(2), . . . , x(N)} are assumed to be samples from the distribution P (x; θ∗)

▶ two examples of probabilistic models of MSA

– MSA profile (position independent model)
– Potts model (directed coupling analysis)
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MSA profile

▶ assumes that amino acids at each position are independent

▶ the probability of a sequence is the product of the probabilities of each amino acid at each
position

P (x; θ) =

L∏
k=1

P (xk; θk)

▶ L is the length of the sequence and θk is the set of parameters for the k-th position

▶ P (xk; θk) is the probability distribution of amino acid types at the k-th position
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MSA profile

▶ assume there are no gaps in the MSA, then xk has 20 possible values (20 amino acids)

▶ the probability distribution P (xk; θk) is a multinomial distribution

P (xk = i; θk) = θi,k

▶ θi,k is the probability of the k-th position being the i-th amino acid and
∑20

i=1 θi,k = 1

▶ estimate θi,k with MLE and is equal to the frequency of each amino acid at each position

θ̂i,k =
Ni,k

N

▶ Ni,k is the number of times the i-th amino acid appears at the k-th position in the MSA
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MSA profile

▶ is a matrix of size 20× L 
θ1,1 θ1,2 . . . θ1,L
θ2,1 θ2,2 . . . θ2,L
...

...
. . .

...
θ20,1 θ20,2 . . . θ20,L


▶ used by many ML methods as input features

▶ captures more information about a protein family than a single sequence

▶ easy to sample sequences from the distribution and compute the likelihood of a sequence

▶ ignores dependency between positions

(ML ∪ MD) ∩ Biophysics Ding 11.16



Computing the likelihood of a sequence and sampling from MSA profile

▶ the likelihood of a sequence x is given by

P (x; θ) =

L∏
k=1

P (xk; θk) =

L∏
k=1

θxk,k

▶ to sample a sequence from the MSA profile, we can sample each position independently

▶ for each position k, sample an amino acid type xk from the multinomial distribution
P (xk; θk)

▶ the sampled sequence is x = (x1, x2, . . . , xL)
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Potts model

▶ a more complex model that captures the dependency between positions

▶ assumes that the probability of a sequence is given by a Boltzmann distribution

P (x; θ) =
1

Z(θ)
e−E(x;θ)

▶ E(x; θ) is the “energy” of the sequence and Z(θ) is the partition function

Z(θ) =
∑
x

e−E(x;θ)

▶ the sum in the partition function is over all possible sequences

▶ how many possible sequences are there for a given length L?
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Potts model

▶ the energy function is given by

E(x; θ) =

L∑
k=1

hk(xk) +

L−1∑
k=1

L∑
l=k+1

Jkl(xk, xl)

▶ hk(xk) is the “field” at position k

▶ hk(xk) captures preferences of the amino acid types at position k

▶ Jkl(xk, xl) is the “coupling” between positions k and l

▶ Jkl(xk, xl) captures the dependency between the amino acid types at positions k and l
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The field term

▶ assume there are no gaps in the MSA, then xk has 20 possible values (20 amino acids)

▶ to specify the field term, we need to define hk(xk) for each amino acid type

▶ let hk(xk = i) = hi,k, the field term at the k-th position is given by

hk(xk) =

20∑
i=1

hi,k · 1{xk = i}

▶ the total field term is given by

L∑
k=1

hk(xk) =

L∑
k=1

20∑
i=1

hi,k · 1{xk = i}
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The coupling term

▶ to specify it, we need to define Jkl(xk, xl) for each pair of amino acid types

▶ let Jkl(xk = i, xl = j) = Jk,l
i,j , the coupling term at positions k and l is given by

Jkl(xk, xl) =

20∑
i=1

20∑
j=1

Jk,l
i,j · 1{xk = i} · 1{xl = j}

▶ the total coupling term is given by

L−1∑
k=1

L∑
l=k+11

Jkl(xk, xl) =

L−1∑
k=1

L∑
l=k+1

20∑
i=1

20∑
j=1

Jk,l
i,j · 1{xk = i} · 1{xl = j}
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An example Potts model

▶ a fully connected undirected probabilistic graphical model

1

23

h1(0) = 2
h1(1) = 1

h2(0) = 1
h2(1) = 1

h3(0) = 1
h3(1) = 1

J12(0, 0) = −1; J12(0, 1) = 2
J12(1, 0) = 2; J12(1, 1) = −1

J13(0, 0) = 2; J13(0, 1) = −1
J13(1, 0) = −1; J13(1, 1) = 2

J23(0, 0) = 0; J23(0, 1) = 0
J23(1, 0) = 0; J23(1, 1) = 0
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An example Potts model

state
(x1, x2, x3) energy probability
(0, 0, 0) 5 0.012
(0, 0, 1) 2 0.244
(0, 1, 0) 8 0.001
(0, 1, 1) 5 0.012
(1, 0, 0) 4 0.033
(1, 0, 1) 7 0.002
(1, 1, 0) 1 0.663
(1, 1, 1) 4 0.033

▶ compute the energy of each state

E((0, 0, 0)) = h1(0) + h2(0) + h3(0)

+ J12(0, 0) + J13(0, 0) + J23(0, 0)

= 2 + 1 + 1− 1 + 2 + 0 = 5

E((1, 1, 0)) = h1(1) + h2(1) + h3(1)

+ J12(1, 1) + J13(1, 1) + J23(1, 1)

= 1 + 1 + 1− 1− 1 + 0 = 1

. . .
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Correlation caused by indirect coupling

▶ the marginal probability of x2, x3 is

x2 = 0 x2 = 1
x3 = 0 0.045 0.664
x3 = 1 0.246 0.045

▶ when x2 = 0, x3 is more likely to be 1; when x2 = 1, x3 is more likely to be 0

▶ x2 and x3 are correlated

▶ but the coupling term J23(x2, x3) is zero

▶ the correlation is caused by the indirect coupling between x2 and x3 through x1
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Learning the Potts model of a MSA

▶ because the Potts model is a probabilistic model, we can use MLE to estimate the
parameters

▶ given a MSA {x(1), x(2), . . . , x(N)}, the average log-likelihood function is

ℓ(θ) =
1

N

N∑
i=1

logP (x(i); θ) =
1

N

N∑
i=1

(
−E(x(i); θ)− logZ(θ)

)
▶ the gradient of the log-likelihood function is

∇θℓ(θ) = − 1

N

N∑
n=1

∇θE(x(n); θ)︸ ︷︷ ︸
the first term

+∇θ logZ(θ)︸ ︷︷ ︸
the second term

(ML ∪ MD) ∩ Biophysics Ding 11.25



Computing the gradients of the first term

▶ the energy function E(x(n); θ) of the sequence x(n) is

E(x(n); θ) =

L∑
k=1

20∑
i=1

hi,k · 1{x(n)
k = i}+

L−1∑
k=1

L∑
l=k+1

20∑
i=1

20∑
j=1

Jk,l
i,j · 1{x(n)

k = i} · 1{x(n)
l = j}

▶ its gradient with respect to the hi,k is

∇hi,k
E(x(n); θ) = 1{x(n)

k = i}

▶ its gradient with respect to the Jk,l
i,j is

∇Jk,l
i,j

E(x(n); θ) = 1{x(n)
k = i} · 1{x(n)

l = j}
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Computing the gradients of the first term

▶ the gradient of first term of the mean log-likelihood function is

∇hi,k

[
− 1

N

N∑
n=1

E(x(n); θ)

]
= − 1

N

N∑
n=1

1{x(n)
k = i} = −

〈
1{x(n)

k = i}
〉
data

∇Jk,l
i,j

[
− 1

N

N∑
n=1

E(x(n); θ)

]
= − 1

N

N∑
n=1

1{x(n)
k = i} · 1{x(n)

l = j}

= −
〈
1{x(n)

k = i} · 1{x(n)
l = j}

〉
data

▶ ⟨·⟩data is the average over the data

▶ the above gradients can be easily evaluated from the MSA

(ML ∪ MD) ∩ Biophysics Ding 11.27



Computing the gradients of the second term

▶ the partition function Z(θ) is given by Z(θ) =
∑

x e
−E(x;θ)

▶ the gradient of the log-partition function with respect to the hi,k is

∇hi,k
logZ(θ) =

1

Z(θ)
∇hi,k

Z(θ) =
1

Z(θ)

∑
x

e−E(x;θ)∇hi,k
E(x; θ)

=
1

Z(θ)

∑
x

e−E(x;θ)
1{xk = i}

=
∑
x

P (x; θ)1{xk = i}

= ⟨1{xk = i}⟩model

▶ ⟨·⟩model is the average over the model
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Computing the gradients of the second term

▶ the gradient of the log-partition function with respect to the Jk,l
i,j is

∇Jk,l
i,j

logZ(θ) =
1

Z(θ)
∇Jk,l

i,j
Z(θ) =

1

Z(θ)

∑
x

e−E(x;θ)∇Jk,l
i,j

E(x; θ)

=
1

Z(θ)

∑
x

e−E(x;θ)
1{xk = i} · 1{xl = j}

=
∑
x

P (x; θ)1{xk = i} · 1{xl = j}

= ⟨1{xk = i} · 1{xl = j}⟩model
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The gradients of the mean log-likelihood function

▶ the gradient of the mean log-likelihood function is

∇hi,k
ℓ(θ) = −

〈
1{x(n)

k = i}
〉
data

+ ⟨1{xk = i}⟩model

∇Jk,l
i,j

ℓ(θ) = −
〈
1{x(n)

k = i} · 1{x(n)
l = j}

〉
data

+ ⟨1{xk = i} · 1{xl = j}⟩model

▶ ⟨·⟩data is the average over the data, which can be easily evaluated from the MSA

▶ ⟨·⟩model is the average over the model

▶ computing ⟨·⟩model exactly is intractable

▶ ⟨·⟩model can be approximated using Monte Carlo sampling
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Monte Carlo sampling from the Potts model

▶ the Potts model is often sampled using the Gibbs sampling algorithm

▶ Gibbs sampling is a special case of Markov Chain Monte Carlo (MCMC) sampling

▶ the idea is to sample from the joint distribution P (x; θ) by sampling from the conditional
distribution of each variable given the others

▶ the conditional distribution of xk in a sequence x is given by

P (xk = i|x−k; θ) =
e−E((xk=i,x−k);θ)∑20
j=1 e

−E((xk=j,x−k);θ)

▶ x−k is the sequence x with the k-th position removed

▶ the conditional distribution of xk is a multinomial distribution
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Sampling from the Potts model using Gibbs sampling

▶ initialize the sequence x with a random sequence

▶ for each position k in the sequence, sample xk from the conditional distribution
P (xk|x−k; θ)

▶ repeat the above step for a number of iterations

▶ the sampled sequence is x = (x1, x2, . . . , xL)

▶ the sampled sequence is one sample from the Potts model
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Learning a Potts model from a MSA by MLE

▶ the gradients of the mean log-likelihood function is

∇θℓ(θ) = − 1

N

N∑
n=1

∇θE(x(n); θ)︸ ︷︷ ︸
the first term

+∇θ logZ(θ)︸ ︷︷ ︸
the second term

▶ the first term can be computed exactly from the MSA and the second term can be
approximated using Gibbs sampling

▶ to maximize ℓ(θ), we can use a stochastic gradient ascent algorithm

▶ in every iteration of the optimization, Gibbs sampling from the Potts model is needed,
which makes the optimization expensive
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Alternative apporaches to learn a Potts model

▶ learning a Potts model from a MSA using MLE is expensive

▶ alternative approaches exist that do not require Gibbs sampling in every iteration and are
faster than MLE

1. mean-field approximation
2. maximum pseudo-likelihood estimation
3. approximate MLE using variational inference
4. noise contrastive estimation
5. contrastive divergence

▶ these approaches are based on different approximations of MLE
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Maximum pseudo-likelihood estimation

▶ the likelihood function given a sequence is given by

L(θ) = P (x; θ) =
1

Z(θ)
e−E(x;θ)

▶ the pseudo-likelihood function given a sequence is given by

L(θ) =

L∏
k=1

P (xk|x−k; θ)

▶ the pseudo-likelihood function is an approximation of the likelihood function

▶ for a Potts model, it is expensive to evaluate the likelihood function and its gradient
whereas the pseudo-likelihood function is easier to evaluate
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Maximum pseudo-likelihood estimation of Potts model from MSA

▶ the mean log-pseudo-likelihood function is given by

ℓ(θ) =
1

N

N∑
n=1

L∑
k=1

logP (x
(n)
k |x(n)

−k ; θ)

▶ the mean log-pseudo-likelihood function and its gradient can be directly computed from
the MSA without Gibbs sampling

▶ we can maximize the mean log-pseudo-likelihood function using any gradient ascent
algorithm
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Coupling in Potts model predicts contacts in protein structure

▶ the Potts model captures the dependency between positions in a MSA of a protein family

▶ the dependency is represented by the coupling terms Jkl(xk, xl)

▶ one cause of the dependency is the physical contact between residues in protein structures

▶ the coupling terms Jkl(xk, xl) can be used to infer the contacts between residues in a
protein structure

▶ the larger scale of the coupling term, the more likely the two residues are in contact

▶ for each pair of residues, the coupling term Jkl(xk, xl) is a matrix of size 20× 20

▶ the matrix norm of the coupling term can be used to measure the strength of the coupling
between the two residues
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Coupling in Potts model predicts contacts in protein structure

▶ MSA is from the protein family PF00041

▶ maximum pseudo-likelihood estimation is
used to learn the Potts model

▶ red triangles are top ranked contacts
predicted based on the coupling terms

▶ blue circles are the actual contacts in the
protein structure

(ML ∪ MD) ∩ Biophysics Ding 11.38


