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Multiple sequence

> multiple sequence alignment (MSA) is sequence
sequences such as DNA, RNA, or protein

» an example protein MSA
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alignment of three or more biological
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Multiple sequence alignment

» each row of the MSA corresponds to the sequence of a specific protein

» each column of the MSA corresponds to a position in the sequence

» dash symbol means the sequence does not have an amino acid aligned at that position
» protein sequences are in the same MSA are evolutionarily related: they are homologous

» homologous sequences are derived from a common ancestor, so they are similar in
sequence, structure, and function
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Multiple sequence alignment

» MSA of a protein contains more information than a single sequence
» can be used to identify conserved regions in the protein

» conserved regions are often important for the protein’s function

» used to infer the evolutionary relationships between the sequences
» used to search for homologous sequences in a database

» used to predict the structure and function of a protein
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Multiple sequence alignment

» multiple algorithms exist for constructing MSAs
» most algorithms require a query sequence and a database of sequences
> they iteratively search for homologous sequences in the database and align them

» example algorithms: Clustal Omega, MUSCLE
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Protein family

» a protein family is a group of proteins that share a common evolutionary origin

» members of a protein family are homologous and have similar sequences, structures, and
functions

> sequences of a protein family are aligned to create a multiple sequence alignment

» the Pfam database is a collection of protein families
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Probabilistic models of MSA
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Probabilistic models in general

» data: {z(D, 23 ... 2"} where 2(!) is a data sample and could be a scale or a vector
» a probabilistic model of the data defines a probability distribution P(x;6)
» 0 is a set of parameters that define the model

P assumes that the observed data are generated by the model, i.e., the data are samples
from the distribution P(x;6*)

» 0* is the true parameter value of the model

» learning the model means estimating the parameters 6 from the data
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A simple example of probabilistic model

» observed data: 0.43,2.49, —-1.91,0.29,—-2.1,0.44

» model: 1 )
_ (=)
p(x;0) = e 202

(2:0) V2mo?

» 0 = (u,0?%) is the set of parameters

» how to estimate 6 from the data?
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Maximum likelihood estimation

» a general approach to estimate the parameters of a probabilistic model based on the
observed data

> estimates the parameters 6 by maximizing the likelihood function

N
L(0) = P(iﬁ(l),x@), o 73:(N);9) — Hp(x(i);g)
i=1

> the estimate § = arg maxy L(6)

> it is often easier to maximize the log-likelihood function
N .
(0) =log L(6) = > log P(z";0)
i=1
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The probability distribution P(x;6)

» an assumption about the data and an approximation of the true distribution

» several factors influence the choice of the distribution

the nature of the data

the complexity of the model

the computational cost of estimating the parameters

the interpretability of the model

— the need of sampling from the distribution or computing the likelihood

» by choosing a distribution with inherent structures, we could infer the structures from data

(ML U MD) n Biophysics Ding 11.11



Example P(z,0) with varying complexity and structrues

» a Gaussian distribution » autoregressive probabilistic models
» a mixture of Gaussians » variational autoencoders

» a Gaussian process » restricted Boltzmann machines

» a hidden Markov model » the Ising model

» the Boltzmann machine » the Potts model

» large language models » large language models of proteins
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Probabilistic models of MSA

> a MSA is a collection of sequences: {2V, 2() ... 2"} where 2() is a sequence of
amino acids

» a probabilistic model of MSA defines a probability distribution P(x;0)
> {2 2@ . 2} are assumed to be samples from the distribution P(x;6*)

> two examples of probabilistic models of MSA

— MSA profile (position independent model)
— Potts model (directed coupling analysis)
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MSA profile

» assumes that amino acids at each position are independent

» the probability of a sequence is the product of the probabilities of each amino acid at each
position

L
P(x;0) = H P(zy; k)
k=1

» [ is the length of the sequence and 6, is the set of parameters for the k-th position

» P(xzy;0y) is the probability distribution of amino acid types at the k-th position
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MSA profile

> assume there are no gaps in the MSA, then xj, has 20 possible values (20 amino acids)
> the probability distribution P(z;6)) is a multinomial distribution

P(xy =14;0,) = 0i
» 0, 1 is the probability of the k-th position being the i-th amino acid and 2?21 O =1

> estimate 6, , with MLE and is equal to the frequency of each amino acid at each position

Ni

o =

» N, i is the number of times the i-th amino acid appears at the k-th position in the MSA
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MSA profile

» is a matrix of size 20 x L

611 bho ... b1
9271 9272 C 92,L
0201 B202 ... B2,

» used by many ML methods as input features
» captures more information about a protein family than a single sequence
> easy to sample sequences from the distribution and compute the likelihood of a sequence

» ignores dependency between positions
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Computing the likelihood of a sequence and sampling from MSA profile

» the likelihood of a sequence x is given by
L L
P(z;0) = H P(xy;0r) = H Oy e
k=1 k=1

» to sample a sequence from the MSA profile, we can sample each position independently

» for each position k, sample an amino acid type x; from the multinomial distribution

» the sampled sequence is © = (21, Z2,...,2)
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Potts model

» a more complex model that captures the dependency between positions

» assumes that the probability of a sequence is given by a Boltzmann distribution

1 pw
P(a;0) = e "

» E(x;0) is the “energy” of the sequence and Z(6) is the partition function

Z(0) = Z e~ B(xi0)

x

» the sum in the partition function is over all possible sequences
» how many possible sequences are there for a given length L?
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Potts model

» the energy function is given by

th T +Z Z Jri(xr, ;)

k=1l=k+1
» hy(xy) is the “field” at position k

» hy(xr) captures preferences of the amino acid types at position &
» Jii(zk,x;) is the “coupling” between positions k and [

» Jii(zk,x;) captures the dependency between the amino acid types at positions k and !
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The field term

> assume there are no gaps in the MSA, then z; has 20 possible values (20 amino acids)
> to specify the field term, we need to define hy(xy) for each amino acid type

> let hy(zk = i) = h;x, the field term at the k-th position is given by
20
hk(xk) = Zhi’k . I].{{Ek = Z}
i=1
» the total field term is given by

L 20
hk(l‘k) = Zzhi’k . ]l{l‘k = Z}

k=11i=1

bl
I\Mh
L
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The coupling term

> to specify it, we need to define Jy;(x, z;) for each pair of amino acid types

> let Jy(zp =i, =j) = ijl the coupling term at positions k and [ is given by

20 20
Jkl (Ek,l'l ZZJIC,;]].{(E}C:Z}IL{CL’IZJ}
i=1 j=1
» the total coupling term is given by
L—-1 20

L—-1 L L 20
Z Z kl a:k,:cl Z Z Jlkj . ]l{:ck = Z} . ]].{:L‘l = j}
k=1 l=k =k+1 =1 1

>
I

11 j=
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An example Potts model

» a fully connected undirected probabilistic graphical model

hi(0) = 2
hi(l) =1

J13( ,0) =2 J13(0 1)

- —1
J13(1,0) = —1; Ji13(1,1) =

J12(0,0) = —1; J12(0,1) =2
Jia(1,0) = 2: Jia(1,1) = —1
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An example Potts model

» compute the energy of each state

state
(x1,22,23) energy probability E((0,0,0)) = h1(0) 4+ h2(0) + h3(0)
(0,0, 0) 5 0.012 + J12(0,0) + J13(0,0) + J23(0,0)
Eg(l’ég g 8'(2)3‘1‘ —241+41-14240=5
(0,1, 1) 5 0.012 E((1,1,0)) = hi(1) + ho(1) + hs(1)
(1,0,0) 4 0.033 + Ji2(1,1) 4+ J13(1,1) + Ja3(1, 1)
(1,0,1) 7 0.002 =1+141-1-1+0=1
(1, 1, 0) 1 0.663
(1,1, 1) 4 0.033
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Correlation caused by indirect coupling

» the marginal probability of zs, z3 is

To = 0 Ty = 1
3 =0 | 0.045 0.664
z3=1| 0246 | 0.045

» when x5 = 0, x3 is more likely to be 1; when x9 = 1, x3 is more likely to be 0

» x5 and x3 are correlated

> but the coupling term Jogz (w2, x3) is zero

» the correlation is caused by the indirect coupling between x5 and 3 through x;
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Learning the Potts model of a MSA

» because the Potts model is a probabilistic model, we can use MLE to estimate the

parameters
> given a MSA {2 23 . 2N} the average log-likelihood function is
1N
ZlogP ). g) Z( z;0) logZ(H))
i=1
> the gradient of the log-likelihood function is
Vol(0) = —— Z VoE(z™;0)+ Vg log Z(6)
—_————

the second term

the first term
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Computing the gradients of the first term

> the energy function E(z(™);0) of the sequence z(™ is

20 20
m(n)g ZZth ]l{:E _7’}+Z Z sz‘k;‘l']l{ﬁ]gn):i}']l{ml(n):j}
k=1 i=1 k=1 Il=k+1 i=1 j=1 7

> its gradient with respect to the h; j is
Vi E(@™;0) = 1{z{" = i}
> its gradient with respect to the Jf}l is

V i B ™) = 1{z™ =i} - 1{=™ = j}
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Computing the gradients of the first term

» the gradient of first term of the mean log-likelihood function is

N N
Vi | = D Bl >;9)] = DU =it = — (el =i})
n=1 n=1
1 1 ¢ (n) (n)
- ( ) _ n) _ - . n) __ -
VJik,}L [ N ;E(m n 79)] == 2 Iz, =i} 1{z;” = j}

» () quia IS the average over the data

» the above gradients can be easily evaluated from the MSA
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Computing the gradients of the second term

> the partition function Z(6) is given by Z(0) = 3" e E(@i0)

> the gradient of the log-partition function with respect to the h; j is

1 1 .

- % zx:e—m%%{xk =i}
ZP(m;G)]l{xk =i}

= <]]'{‘Tk = i}>model

» ()nodel 1S the average over the model
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Computing the gradients of the second term

> the gradient of the log-partition function with respect to the Jik;-l is

1 1  E(a:
ink;.,jl log Z(@) = Z(&) Jk.,sz(Q) = m Z € B( ’Q)VJ?;}ZE(.’L'; 9)

= (1 Ze*Eze)]l{:ck*z} {z; = j}

:ZP z;0){zy =i} - 1{z; = j}

= <]1{.Ik = ’L} . ]l{l‘l = j}>m0d61
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The gradients of the mean log-likelihood function

» the gradient of the mean log-likelihood function is

Vneb®) = = (e =i})  + (1{ox = }moda

data
Vall0) = = (Hat” =i} - Ual™ = 3})  +(Loe =i} 1o = Dimoaa

data

> <~>data is the average over the data, which can be easily evaluated from the MSA
> (-} 4o IS the average over the model

» computing (-) | exactly is intractable

mode

» (-)1n0del Can be approximated using Monte Carlo sampling
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Monte Carlo sampling from the Potts model

the Potts model is often sampled using the Gibbs sampling algorithm
Gibbs sampling is a special case of Markov Chain Monte Carlo (MCMC) sampling

the idea is to sample from the joint distribution P(z;6) by sampling from the conditional
distribution of each variable given the others

the conditional distribution of z in a sequence x is given by

e~ E((wr=i,7_1);0)

Zjozl e~ E((zr=j,x_1);0)

P(.’bk = 7;|{E,k; 9) =

z_ is the sequence x with the k-th position removed

the conditional distribution of x;, is a multinomial distribution
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Sampling from the Potts model using Gibbs sampling

» initialize the sequence = with a random sequence

» for each position k in the sequence, sample x; from the conditional distribution
P(zplz_k;0)

> repeat the above step for a number of iterations
> the sampled sequence is © = (x1,x2,...,2L)

» the sampled sequence is one sample from the Potts model
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Learning a Potts model from a MSA by MLE

» the gradients of the mean log-likelihood function is

N
1
2.
Vol(0) = —+ 2:: :0) + Vg log Z(0)

the second term

the first term

» the first term can be computed exactly from the MSA and the second term can be
approximated using Gibbs sampling

> to maximize ¢(f), we can use a stochastic gradient ascent algorithm

» in every iteration of the optimization, Gibbs sampling from the Potts model is needed,
which makes the optimization expensive
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Alternative apporaches to learn a Potts model

» learning a Potts model from a MSA using MLE is expensive

> alternative approaches exist that do not require Gibbs sampling in every iteration and are
faster than MLE

mean-field approximation

maximum pseudo-likelihood estimation
approximate MLE using variational inference
noise contrastive estimation

contrastive divergence

AP

» these approaches are based on different approximations of MLE
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Maximum pseudo-likelihood estimation

» the likelihood function given a sequence is given by

L(6) = P(x:0) = %ew(z;m

» the pseudo-likelihood function given a sequence is given by

P(xy|z_p;0

I\Eh

» the pseudo-likelihood function is an approximation of the likelihood function

» for a Potts model, it is expensive to evaluate the likelihood function and its gradient
whereas the pseudo-likelihood function is easier to evaluate
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Maximum pseudo-likelihood estimation of Potts model from MSA

» the mean log-pseudo-likelihood function is given by

N L
06) = 5 D> log Plaf”|e"}:6)

» the mean log-pseudo-likelihood function and its gradient can be directly computed from
the MSA without Gibbs sampling

» we can maximize the mean log-pseudo-likelihood function using any gradient ascent
algorithm
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Coupling in Potts model predicts contacts in protein structure

> the Potts model captures the dependency between positions in a MSA of a protein family
» the dependency is represented by the coupling terms Jy;(xk, ;)
> one cause of the dependency is the physical contact between residues in protein structures

» the coupling terms Jy;(xk, z;) can be used to infer the contacts between residues in a
protein structure

> the larger scale of the coupling term, the more likely the two residues are in contact
> for each pair of residues, the coupling term Jy;(xg, ;) is a matrix of size 20 x 20

» the matrix norm of the coupling term can be used to measure the strength of the coupling
between the two residues
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Coupling in Potts model predicts contacts in

» MSA is from the protein family PF00041

» maximum pseudo-likelihood estimation is
used to learn the Potts model

» red triangles are top ranked contacts
predicted based on the coupling terms

» blue circles are the actual contacts in the
protein structure
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