11. Multiple Sequence Alignment

Outline

Introduction

Probabilistic models of MSA

multiple sequence alignment (MSA) is sequence alignment of three or more biological sequences such as DNA, RNA, or protein

▶ an example protein MSA

			· .					
Q5E940_BOVIN	М	<mark>P</mark> REDR <mark>A</mark> T W	SNY <mark>F</mark> lf	IIQLLDDYP	KCFIV <mark>G</mark> A <mark>D</mark> NV <mark>GS</mark> I	K <mark>OMO</mark> Q IRMS LRGK	- AVV LMGKNTMMR	KAIRGHLENNPALE
RLA0_HUMAN	М	<mark>P</mark> REDR <mark>A</mark> T W	SNY <mark>F</mark> lf	IIQLLDDY <mark>P</mark> H	CFIV <mark>G</mark> A <mark>D</mark> NV <mark>GS</mark> I	K <mark>QMQ</mark> QIRMSLRGK	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
RLA0_MOUSE	M	<mark>P</mark> REDR <mark>A</mark> T W	SNY <mark>F</mark> LF	IIQLLDDY <mark>P</mark> H	CFIV <mark>G</mark> A <mark>D</mark> NVG <mark>S</mark> I	K <mark>QMQ</mark> Q IRMS LRGK	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
RLA0_RAT	М	<mark>P</mark> REDR <mark>A</mark> T W	SNY <mark>F</mark> LF	II <mark>QLL</mark> DD <mark>YP</mark> H	KCFIV <mark>G</mark> ADNVGSI	K <mark>QMQ</mark> Q IRMS LRGK	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
RLA0_CHICK	М	PREDR <mark>A</mark> T W	SN Y <mark>F</mark> MF	TI <mark>QLL</mark> DD <mark>YP</mark> H	CFVV <mark>G</mark> ADNVG <mark>S</mark> I	K <mark>QMQ</mark> Q IRMS LRGK	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
RLA0_RANSY	М	<mark>P</mark> REDR <mark>A</mark> T W	SNY <mark>F</mark> LF	XII <mark>QLL</mark> DD <mark>YP</mark> H	KCFIV <mark>G</mark> ADNVG <mark>S</mark> I	K <mark>omo</mark> q irms irg k	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNSALE
Q7ZUG3_BRARE	М	PREDR <mark>ATW</mark>	SNYFLF	TIQLLDDYP:	CFIV <mark>GAD</mark> NVG <mark>S</mark> I	K <mark>QMQT IR</mark> LS <mark>LRG</mark> K	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPALE
RLA0_ICTPU	M	PREDR <mark>A</mark> TW	SNYFLF	TI <mark>Ö</mark> LTND <mark>A</mark> bh	CFIV <mark>GAD</mark> NVGS	K <mark>QMQ</mark> T IRLS LRGK	– AIV LM <mark>GKNTM</mark> MR	KAIRGHLENNPALE
RLA0_DROME	M	VRENKAAW	AQ YF IF	X V ELFDEFP	CFIV <mark>G</mark> ADNVG <mark>S</mark> I	K <mark>QMQN IR</mark> T S <mark>LRG</mark> L	– AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNPQLE
RLA0_DICDI	M	SGAG-SKR	KLFIEF	ATKLFTTYDE	(MIVAEADFV <mark>GS</mark>	SQLQKIRKSIRGI	-GAVLMGKKTMIR	KVIRDLADSKPELD
Q54LP0_DICDI	M	SGAG-SKR	NVFIEF	ATKLFTTYDE	MIVAEADFVGS	SQLQKIRKSIRGI	-GAVLMGKKTMIR	KVIRDLADSKPELD
RLA0_PLAF8	M	AKLSKQQK	OWATER	Lastiggast	CILIAHADHAG8	OMAS VRKSLRG K	- ATILMGKNTRIR	TALKKNLQAVPQIE
RLA0_SULAC	MIGLAVT	TTKKLAKW	VDEVAE	LTERLETHE	TITIAN IEGEPAI	OK LHE IRKK LRGK	- ADIKVTKNNLFN	TALKNAGYDTK
RLA0_SULTO	MRIMAVIT	QERK LAKWE	TEEAKE	LEOKLREYHI	TITAN LEGEPAI	OK LHD I RKKMRGM	- AEIKVTKNTLFG	TAAKNAGLDVS
RLAO_SOLSO	MENNETREOMYR	ROKKVASW	TIMER	LIELIKNSNI	ILLIGNLEGT PAI	THE TRAKE LAGE	- MILKVIKNILFK	
RLAO AERPE	MAT A TOVDDYY	RE KPIPE W	UV TUCE	ATELLOKYDY	VELENDLIGIET	TT UE YE YE TE BEY	- CYTYTTTYDTIEV	TAETKYYCC TDAE
PLA0 METAC			VDETEN	TTELLQK TE			- AVI VVOPNTI TE	
RLAO METMA	MAEERH	HTEHTROW	KDETEN	TKEL TOSHKI	FONVETECTLAT		- AVL KVSRNTLTE	RALNOLGESTP
BLAO ABCEIL	MAAVRG	SPPEY	VRAVER	TKEMTSSKP	VATVSERNVDA	OMOKTRREFRCK	AFTKYYKNTLLE	BALDALGGDYL
RLAO METKA	MAYKAKGOPPSG	YEPKVAEW	RREVKE	LKELMDEYEN	VGLVDLEGTPAL	OLOETRAKLEER	DTTTEMSENTLMB	TALEEKLDEBPELE
RLA0 METTH		-MAHVAEW	KKEVOE	LHDLIKGYEY	VGIANLADIPA	OLOKMROT LEDS	-ALIRMSKKTLIS	LALEKAGRELENVD
RLA0 METTL	MITAE	SEHKIAPW	IEEVNE	LKELLKNGOI	IVAL VOMME VPAI	ROLOE IRDK IR-G	TMTLKMSRNTLIE	RAIKEVARETGNPEFA

- each row of the MSA corresponds to the sequence of a specific protein
- each column of the MSA corresponds to a position in the sequence
- dash symbol means the sequence does not have an amino acid aligned at that position
- > protein sequences are in the same MSA are evolutionarily related: they are homologous
- homologous sequences are derived from a common ancestor, so they are similar in sequence, structure, and function

- ▶ MSA of a protein contains more information than a single sequence
- can be used to identify conserved regions in the protein
- conserved regions are often important for the protein's function
- used to infer the evolutionary relationships between the sequences
- used to search for homologous sequences in a database
- used to predict the structure and function of a protein

- multiple algorithms exist for constructing MSAs
- most algorithms require a query sequence and a database of sequences
- they iteratively search for homologous sequences in the database and align them
- example algorithms: Clustal Omega, MUSCLE

Protein family

- > a protein family is a group of proteins that share a common evolutionary origin
- members of a protein family are homologous and have similar sequences, structures, and functions
- sequences of a protein family are aligned to create a multiple sequence alignment
- the <u>Pfam database</u> is a collection of protein families

Outline

Introduction

Probabilistic models of MSA

Probabilistic models in general

- \blacktriangleright data: $\{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}$, where $x^{(i)}$ is a data sample and could be a scale or a vector
- ▶ a probabilistic model of the data defines a probability distribution $P(x; \theta)$
- $\blacktriangleright \ \theta$ is a set of parameters that define the model
- ► assumes that the observed data are generated by the model, i.e., the data are samples from the distribution $P(x; \theta^*)$
- $\blacktriangleright \ \theta^*$ is the true parameter value of the model
- learning the model means estimating the parameters θ from the data

A simple example of probabilistic model

b observed data: 0.43, 2.49, -1.91, 0.29, -2.1, 0.44

▶ model:

$$p(x;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

▶ $\theta = (\mu, \sigma^2)$ is the set of parameters

• how to estimate θ from the data?

Maximum likelihood estimation

- a general approach to estimate the parameters of a probabilistic model based on the observed data
- \blacktriangleright estimates the parameters θ by maximizing the likelihood function

$$L(\theta) = P(x^{(1)}, x^{(2)}, \dots, x^{(N)}; \theta) = \prod_{i=1}^{N} P(x^{(i)}; \theta)$$

• the estimate $\hat{\theta} = \arg \max_{\theta} L(\theta)$

it is often easier to maximize the log-likelihood function

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{N} \log P(x^{(i)}; \theta)$$

The probability distribution $P(x; \theta)$

an assumption about the data and an approximation of the true distribution

several factors influence the choice of the distribution

- $-\,$ the nature of the data
- the complexity of the model
- the computational cost of estimating the parameters
- the interpretability of the model
- the need of sampling from the distribution or computing the likelihood
- by choosing a distribution with inherent structures, we could infer the structures from data

Example $P(x, \theta)$ with varying complexity and structrues

- a Gaussian distribution
- a mixture of Gaussians
- a Gaussian process
- a hidden Markov model
- the Boltzmann machine
- large language models

- autoregressive probabilistic models
- variational autoencoders
- restricted Boltzmann machines
- the Ising model
- the Potts model
- large language models of proteins

Probabilistic models of MSA

- ▶ a MSA is a collection of sequences: $\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\}$, where $x^{(i)}$ is a sequence of amino acids
- ▶ a probabilistic model of MSA defines a probability distribution $P(x; \theta)$
- $\{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}$ are assumed to be samples from the distribution $P(x; \theta^*)$
- two examples of probabilistic models of MSA
 - MSA profile (position independent model)
 - Potts model (directed coupling analysis)

MSA profile

- assumes that amino acids at each position are independent
- the probability of a sequence is the product of the probabilities of each amino acid at each position

$$P(x;\theta) = \prod_{k=1}^{L} P(x_k;\theta_k)$$

- \blacktriangleright L is the length of the sequence and θ_k is the set of parameters for the k-th position
- ▶ $P(x_k; \theta_k)$ is the probability distribution of amino acid types at the k-th position

MSA profile

 \blacktriangleright assume there are no gaps in the MSA, then x_k has 20 possible values (20 amino acids)

▶ the probability distribution $P(x_k; \theta_k)$ is a multinomial distribution

$$P(x_k = i; \theta_k) = \theta_{i,k}$$

▶ $\theta_{i,k}$ is the probability of the *k*-th position being the *i*-th amino acid and $\sum_{i=1}^{20} \theta_{i,k} = 1$

• estimate $\theta_{i,k}$ with MLE and is equal to the frequency of each amino acid at each position

$$\hat{\theta}_{i,k} = \frac{N_{i,k}}{N}$$

N_{i,k} is the number of times the i-th amino acid appears at the k-th position in the MSA

MSA profile

 \blacktriangleright is a matrix of size $20 \times L$

$$\begin{pmatrix} \theta_{1,1} & \theta_{1,2} & \dots & \theta_{1,L} \\ \theta_{2,1} & \theta_{2,2} & \dots & \theta_{2,L} \\ \vdots & \vdots & \ddots & \vdots \\ \langle \theta_{20,1} & \theta_{20,2} & \dots & \theta_{20,L} \end{pmatrix}$$

used by many ML methods as input features

- captures more information about a protein family than a single sequence
- easy to sample sequences from the distribution and compute the likelihood of a sequence
- ignores dependency between positions

Computing the likelihood of a sequence and sampling from MSA profile

 \blacktriangleright the likelihood of a sequence x is given by

$$P(x;\theta) = \prod_{k=1}^{L} P(x_k;\theta_k) = \prod_{k=1}^{L} \theta_{x_k,k}$$

- ▶ to sample a sequence from the MSA profile, we can sample each position independently
- for each position k, sample an amino acid type x_k from the multinomial distribution $P(x_k; \theta_k)$
- the sampled sequence is $x = (x_1, x_2, \dots, x_L)$

Potts model

> a more complex model that captures the dependency between positions

> assumes that the probability of a sequence is given by a Boltzmann distribution

$$P(x;\theta) = \frac{1}{Z(\theta)}e^{-E(x;\theta)}$$

▶ $E(x; \theta)$ is the "energy" of the sequence and $Z(\theta)$ is the partition function

$$Z(\theta) = \sum_{x} e^{-E(x;\theta)}$$

the sum in the partition function is over all possible sequences

▶ how many possible sequences are there for a given length *L*?

Potts model

the energy function is given by

$$E(x;\theta) = \sum_{k=1}^{L} h_k(x_k) + \sum_{k=1}^{L-1} \sum_{l=k+1}^{L} J_{kl}(x_k, x_l)$$

- $h_k(x_k)$ is the "field" at position k
- \blacktriangleright $h_k(x_k)$ captures preferences of the amino acid types at position k
- ▶ $J_{kl}(x_k, x_l)$ is the "coupling" between positions k and l
- \blacktriangleright $J_{kl}(x_k, x_l)$ captures the dependency between the amino acid types at positions k and l

The field term

 \blacktriangleright assume there are no gaps in the MSA, then x_k has 20 possible values (20 amino acids)

 \blacktriangleright to specify the field term, we need to define $h_k(x_k)$ for each amino acid type

▶ let $h_k(x_k = i) = h_{i,k}$, the field term at the *k*-th position is given by

$$h_k(x_k) = \sum_{i=1}^{20} h_{i,k} \cdot \mathbb{1}\{x_k = i\}$$

the total field term is given by

$$\sum_{k=1}^{L} h_k(x_k) = \sum_{k=1}^{L} \sum_{i=1}^{20} h_{i,k} \cdot \mathbb{1}\{x_k = i\}$$

The coupling term

 \blacktriangleright to specify it, we need to define $J_{kl}(x_k, x_l)$ for each pair of amino acid types

• let $J_{kl}(x_k = i, x_l = j) = J_{i,j}^{k,l}$, the coupling term at positions k and l is given by

$$J_{kl}(x_k, x_l) = \sum_{i=1}^{20} \sum_{j=1}^{20} J_{i,j}^{k,l} \cdot \mathbb{1}\{x_k = i\} \cdot \mathbb{1}\{x_l = j\}$$

the total coupling term is given by

$$\sum_{k=1}^{L-1} \sum_{l=k+11}^{L} J_{kl}(x_k, x_l) = \sum_{k=1}^{L-1} \sum_{l=k+1}^{L} \sum_{i=1}^{20} \sum_{j=1}^{20} J_{i,j}^{k,l} \cdot \mathbb{1}\{x_k = i\} \cdot \mathbb{1}\{x_l = j\}$$

An example Potts model

▶ a fully connected undirected probabilistic graphical model

$$\begin{array}{c} h_1(0) = 2 \\ h_1(1) = 1 \end{array}$$

$$J_{23}(0,0) = 0; J_{23}(0,1) = 0$$

 $J_{23}(1,0) = 0; J_{23}(1,1) = 0$

An example Potts model

state		
(x_1, x_2, x_3)	energy	probability
(0, 0, 0)	5	0.012
(0, 0, 1)	2	0.244
(0, 1, 0)	8	0.001
(0, 1, 1)	5	0.012
(1, 0, 0)	4	0.033
(1, 0, 1)	7	0.002
(1, 1, 0)	1	0.663
(1, 1, 1)	4	0.033

compute the energy of each state

$$E((0,0,0)) = h_1(0) + h_2(0) + h_3(0) + J_{12}(0,0) + J_{13}(0,0) + J_{23}(0,0) = 2 + 1 + 1 - 1 + 2 + 0 = 5 E((1,1,0)) = h_1(1) + h_2(1) + h_3(1) + J_{12}(1,1) + J_{13}(1,1) + J_{23}(1,1) = 1 + 1 + 1 - 1 - 1 + 0 = 1$$

. . .

Correlation caused by indirect coupling

• the marginal probability of x_2, x_3 is

	$x_2 = 0$	$x_2 = 1$
$x_3 = 0$	0.045	0.664
$x_3 = 1$	0.246	0.045

• when $x_2 = 0$, x_3 is more likely to be 1; when $x_2 = 1$, x_3 is more likely to be 0

 \blacktriangleright x_2 and x_3 are correlated

• but the coupling term $J_{23}(x_2, x_3)$ is zero

 \blacktriangleright the correlation is caused by the indirect coupling between x_2 and x_3 through x_1

Learning the Potts model of a MSA

because the Potts model is a probabilistic model, we can use MLE to estimate the parameters

 \blacktriangleright given a MSA $\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\},$ the average log-likelihood function is

$$\ell(\theta) = \frac{1}{N} \sum_{i=1}^{N} \log P(x^{(i)}; \theta) = \frac{1}{N} \sum_{i=1}^{N} \left(-E(x^{(i)}; \theta) - \log Z(\theta) \right)$$

the gradient of the log-likelihood function is

$$\nabla_{\theta} \ell(\theta) = \underbrace{-\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} E(x^{(n)}; \theta)}_{\text{the second term}} + \underbrace{\nabla_{\theta} \log Z(\theta)}_{\text{the second term}}$$

Computing the gradients of the first term

 \blacktriangleright the energy function $E(x^{(n)};\theta)$ of the sequence $x^{(n)}$ is

$$E(x^{(n)};\theta) = \sum_{k=1}^{L} \sum_{i=1}^{20} h_{i,k} \cdot \mathbb{1}\{x_k^{(n)} = i\} + \sum_{k=1}^{L-1} \sum_{l=k+1}^{L} \sum_{i=1}^{20} \sum_{j=1}^{20} J_{i,j}^{k,l} \cdot \mathbb{1}\{x_k^{(n)} = i\} \cdot \mathbb{1}\{x_l^{(n)} = j\}$$

 \blacktriangleright its gradient with respect to the $h_{i,k}$ is

$$\nabla_{h_{i,k}} E(x^{(n)}; \theta) = \mathbb{1}\{x_k^{(n)} = i\}$$

• its gradient with respect to the $J_{i,j}^{k,l}$ is

$$\nabla_{J_{i,j}^{k,l}} E(x^{(n)};\theta) = \mathbb{1}\{x_k^{(n)} = i\} \cdot \mathbb{1}\{x_l^{(n)} = j\}$$

Computing the gradients of the first term

the gradient of first term of the mean log-likelihood function is

$$\begin{split} \nabla_{h_{i,k}} \left[-\frac{1}{N} \sum_{n=1}^{N} E(x^{(n)}; \theta) \right] &= -\frac{1}{N} \sum_{n=1}^{N} \mathbbm{1}\{x_k^{(n)} = i\} = -\left\langle \mathbbm{1}\{x_k^{(n)} = i\} \right\rangle_{\text{data}} \\ \nabla_{J_{i,j}^{k,l}} \left[-\frac{1}{N} \sum_{n=1}^{N} E(x^{(n)}; \theta) \right] &= -\frac{1}{N} \sum_{n=1}^{N} \mathbbm{1}\{x_k^{(n)} = i\} \cdot \mathbbm{1}\{x_l^{(n)} = j\} \\ &= -\left\langle \mathbbm{1}\{x_k^{(n)} = i\} \cdot \mathbbm{1}\{x_l^{(n)} = j\} \right\rangle_{\text{data}} \end{split}$$

- $\blacktriangleright~\langle\cdot\rangle_{\rm data}$ is the average over the data
- ▶ the above gradients can be easily evaluated from the MSA

Computing the gradients of the second term

 \blacktriangleright the partition function $Z(\theta)$ is given by $Z(\theta) = \sum_x e^{-E(x;\theta)}$

• the gradient of the log-partition function with respect to the $h_{i,k}$ is

$$\nabla_{h_{i,k}} \log Z(\theta) = \frac{1}{Z(\theta)} \nabla_{h_{i,k}} Z(\theta) = \frac{1}{Z(\theta)} \sum_{x} e^{-E(x;\theta)} \nabla_{h_{i,k}} E(x;\theta)$$
$$= \frac{1}{Z(\theta)} \sum_{x} e^{-E(x;\theta)} \mathbb{1}\{x_k = i\}$$
$$= \sum_{x} P(x;\theta) \mathbb{1}\{x_k = i\}$$
$$= \langle \mathbb{1}\{x_k = i\} \rangle_{\text{model}}$$

 $\blacktriangleright~\left\langle \cdot \right\rangle_{model}$ is the average over the model

Computing the gradients of the second term

▶ the gradient of the log-partition function with respect to the $J_{i,j}^{k,l}$ is

$$\nabla_{J_{i,j}^{k,l}} \log Z(\theta) = \frac{1}{Z(\theta)} \nabla_{J_{i,j}^{k,l}} Z(\theta) = \frac{1}{Z(\theta)} \sum_{x} e^{-E(x;\theta)} \nabla_{J_{i,j}^{k,l}} E(x;\theta)$$
$$= \frac{1}{Z(\theta)} \sum_{x} e^{-E(x;\theta)} \mathbb{1}\{x_k = i\} \cdot \mathbb{1}\{x_l = j\}$$
$$= \sum_{x} P(x;\theta) \mathbb{1}\{x_k = i\} \cdot \mathbb{1}\{x_l = j\}$$
$$= \langle \mathbb{1}\{x_k = i\} \cdot \mathbb{1}\{x_l = j\}\rangle_{\text{model}}$$

The gradients of the mean log-likelihood function

the gradient of the mean log-likelihood function is

$$\begin{aligned} \nabla_{h_{i,k}}\ell(\theta) &= -\left\langle \mathbbm{1}\{x_k^{(n)} = i\}\right\rangle_{\text{data}} + \left\langle \mathbbm{1}\{x_k = i\}\right\rangle_{\text{model}} \\ \nabla_{J_{i,j}^{k,l}}\ell(\theta) &= -\left\langle \mathbbm{1}\{x_k^{(n)} = i\} \cdot \mathbbm{1}\{x_l^{(n)} = j\}\right\rangle_{\text{data}} + \left\langle \mathbbm{1}\{x_k = i\} \cdot \mathbbm{1}\{x_l = j\}\right\rangle_{\text{model}} \end{aligned}$$

 $\blacktriangleright~\langle\cdot\rangle_{\rm data}$ is the average over the data, which can be easily evaluated from the MSA

- $\blacktriangleright~\left\langle \cdot \right\rangle_{model}$ is the average over the model
- \blacktriangleright computing $\left<\cdot\right>_{\rm model}$ exactly is intractable
- $\blacktriangleright~\langle\cdot\rangle_{\rm model}$ can be approximated using Monte Carlo sampling

Monte Carlo sampling from the Potts model

- ▶ the Potts model is often sampled using the Gibbs sampling algorithm
- Gibbs sampling is a special case of Markov Chain Monte Carlo (MCMC) sampling
- the idea is to sample from the joint distribution $P(x; \theta)$ by sampling from the conditional distribution of each variable given the others
- \blacktriangleright the conditional distribution of x_k in a sequence x is given by

$$P(x_k = i | x_{-k}; \theta) = \frac{e^{-E((x_k = i, x_{-k}); \theta)}}{\sum_{j=1}^{20} e^{-E((x_k = j, x_{-k}); \theta)}}$$

• x_{-k} is the sequence x with the k-th position removed

► the conditional distribution of x_k is a multinomial distribution (ML \cup MD) \cap Biophysics Ding

Sampling from the Potts model using Gibbs sampling

- \blacktriangleright initialize the sequence x with a random sequence
- for each position k in the sequence, sample x_k from the conditional distribution $P(x_k|x_{-k};\theta)$
- repeat the above step for a number of iterations
- the sampled sequence is $x = (x_1, x_2, \dots, x_L)$
- the sampled sequence is one sample from the Potts model

Learning a Potts model from a MSA by MLE

the gradients of the mean log-likelihood function is

$$\nabla_{\theta} \ell(\theta) = \underbrace{-\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} E(x^{(n)}; \theta)}_{\text{the second term}} + \underbrace{\nabla_{\theta} \log Z(\theta)}_{\text{the second term}}$$

the first term can be computed exactly from the MSA and the second term can be approximated using Gibbs sampling

- \blacktriangleright to maximize $\ell(\theta)$, we can use a stochastic gradient ascent algorithm
- in every iteration of the optimization, Gibbs sampling from the Potts model is needed, which makes the optimization expensive

Alternative apporaches to learn a Potts model

- learning a Potts model from a MSA using MLE is expensive
- alternative approaches exist that do not require Gibbs sampling in every iteration and are faster than MLE
 - 1. mean-field approximation
 - 2. maximum pseudo-likelihood estimation
 - 3. approximate MLE using variational inference
 - 4. noise contrastive estimation
 - 5. contrastive divergence

these approaches are based on different approximations of MLE

Maximum pseudo-likelihood estimation

the likelihood function given a sequence is given by

$$L(\theta) = P(x;\theta) = \frac{1}{Z(\theta)}e^{-E(x;\theta)}$$

the pseudo-likelihood function given a sequence is given by

$$L(\theta) = \prod_{k=1}^{L} P(x_k | x_{-k}; \theta)$$

▶ the pseudo-likelihood function is an approximation of the likelihood function

for a Potts model, it is expensive to evaluate the likelihood function and its gradient whereas the pseudo-likelihood function is easier to evaluate

Maximum pseudo-likelihood estimation of Potts model from MSA

the mean log-pseudo-likelihood function is given by

$$\ell(\theta) = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{L} \log P(x_k^{(n)} | x_{-k}^{(n)}; \theta)$$

- the mean log-pseudo-likelihood function and its gradient can be directly computed from the MSA without Gibbs sampling
- we can maximize the mean log-pseudo-likelihood function using any gradient ascent algorithm

Coupling in Potts model predicts contacts in protein structure

- ▶ the Potts model captures the dependency between positions in a MSA of a protein family
- the dependency is represented by the coupling terms $J_{kl}(x_k, x_l)$
- one cause of the dependency is the physical contact between residues in protein structures
- the coupling terms $J_{kl}(x_k, x_l)$ can be used to infer the contacts between residues in a protein structure
- ▶ the larger scale of the coupling term, the more likely the two residues are in contact
- for each pair of residues, the coupling term $J_{kl}(x_k, x_l)$ is a matrix of size 20×20
- the matrix norm of the coupling term can be used to measure the strength of the coupling between the two residues

Coupling in Potts model predicts contacts in protein structure

- MSA is from the protein family PF00041
- maximum pseudo-likelihood estimation is used to learn the Potts model
- red triangles are top ranked contacts predicted based on the coupling terms
- blue circles are the actual contacts in the protein structure

