10. Molecular Dynamics Simulations



Molecular dynamics simulations

» a technique for computing equilibrium and transport properties of a classical many-body
system

» very similar to real experiments in many aspects

> involves preparing a system (a sample), equilibrating it (wait), and computing observables
(measurement).

» common mistakes are very similar to those made in real experiments, such as: the system

is not prepared correctly, the measurement is too short, or we are not measuring the right
thing.

(ML U MD) n Biophysics Ding 10.1



Outline

Initialization
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Receipe for molecular dynamics simulations

» common workflow of a molecular dynamics simulation:

1. initialize the system including the positions and velocities of the particles
2. run the simulation by integrating the equations of motion
3. compute the observables of interest

» all three steps are crucial for a successful simulation

» the second step is often the most time-consuming part of a simulation
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Initialization

» assign the initial positions and velocities for all particles
» initial positions should be compatible with the structure that we want to simulate

» should not have particles overlapping with each other, which is often achieved by initially
placing the particles on a cubic lattice

» for molecules such as proteins with known structures, we could use the known structure as
the initial configuration

(ML U MD) n Biophysics Ding 10.4



>

>

Initialization

initial velocities need to be compatible with the temperature of the system

from statistical mechanics, we know that the average kinetic energy per degree of freedom
is given by
1 1
- = —kpT
<2mva> D) B

more specifically, the velocity components of a particle follow the Boltzmann distribution

1 efmvi/2k:BT

Pva) = \27kgT/m

we can assign the initial velocities by sampling from the Boltzmann distribution

what is the average speed of a water molecule at room temperature?
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Integrating the equation of motion
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The equation of motion

» the equation of motion is given by Newton's second law

d*r;
miT; = —ViU(rl;I'Za"'7rN)

» an equivalent form is the Hamiltonian equations of motion

dqi - OH dpi OH

dt — op;. dt  dq

where q; = r;, p; = m;Vv;, and
H(q17q27"'7qN,p13p27"‘,pN) :K(plvp%"'va)+U(q1,q27~~'7qN)

p2
= E — 4+ U
i 2m; (Qh q2, ) QN)
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The Hamiltonian equations of motion

» Hamiltonian equations
dqi N OH N &
dpi OH

=L VY U(ar, ...,
7 9 ViU(a1,92 an)

s )= (o) ()

> a set of first-order differential equations and equivalent to Newton's second law

» in vector form, we have

» provides a more useful framework for understanding the dynamics of a system
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Integrating the Hamiltonian equations of motion

» a solution of the Hamiltonian equations of motion is a trajectory in the phase space of

(a,p)

» example: a harmonic oscillator

2

p 1
H(g,p) = 5 -+ §kq2

whenm=1and k=1

dqg OH
at~ ap 7
dp  OH _
@~ o1
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Integrating the Hamiltonian equations of motion

» most Hamiltonian systems are not solvable analytically
» need numerical methods to integrate the Hamiltonian equations of motion
» the naive method is the Euler method, which is not a good choice

» a much better method is the leap-frog Verlet method
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The Euler method

» naive Euler method

e+ = p(t) + 2 = () - 5 (a(t)
40 = a(t) + <2 = (1) + L2
» modified Euler method
e+ = p(t) - < (al0)
alt +0) = a(t) + LI
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The Euler method

» numerical trajectory for the 1-d harmonic oscillator

(a) Euler's Method, stepsize 0.3

(b) Modified Euler's Method, stepsize 0.3

momentum (p)
0
1

momentum (p)
0
]
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The leap-frog Verlet method

» integration scheme

plt+¢/2) = plt — ¢/2) — %wn
gl +0) = qt) + LD

» is called the leap-frog method because the position and momentum are updated in a
staggered fashion

» is a symplectic integrator which preserves the phase space volume

» has better energy conservation properties than the Euler method
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The leap-frog Verlet method

» numerical trajectory for the 1-d harmonic oscillator

(c) Leapfrog Method, stepsize 0.3 (d) Leapfrog Method, stepsize 1.2

momentum (p
0
1
momentum (p)
0
1

position (q) position (q)
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The Hamiltonian equations are energy conserving

both the Newtonian and Hamiltonian equations of motion are energy conserving
trajectories are confined to a constant energy surface in phase space

conformations of the system are sampled from the NVE ensemble, which is also called the
microcanonical ensemble

we are mostly interested in the NVT ensemble, where the temperature is kept constant
in the NVT ensemble, the system is contacted with and exchange energy with a heat bath
in the NVT ensemble, the total energy is not conserved but fluctuates

integrating the Hamiltonian equations of motion alone will not give us the NVT ensemble
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Integrators for the NVT ensemble

> several integrators are available for the NVT ensemble

— Andersen thermostat
— Nose-Hoover thermostat
— Langevin dynamics

» we will only discuss the Langevin dynamics, which is the most widely used method
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Langevin dynamics

» the Langevin equation for the NVT ensemble is given by

dv;
mth = —VU(ry,ra,...,vn) —ymivi + /2mvkpTR;(t)

» ~ is the friction coefficient
» R;(t) is an uncorrelated random force with zero mean and unit variance
> —~m;v; is the frictional force modeling the viscous drag

» /2m;vkpTR;(t) is the random force modeling the interaction with the heat bath
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Integrating the Langevin equation

» use the Langevin leap-frog method

vi(t +€/2) = vi(t —¢/2)a— (1 - a)/(vmi)%g(t) + kT (1~ a?)/miR;(t)
I'i(t + 6) = I‘Z(t) + EVi(t + 6/2)

a=e °

» sampled momentums follow the Boltzmann distribution of

1 e—miv?/2kBT

p(vi) = \21kgT/m;

» sampled configurations follow the Boltzmann distribution of

1
—U(r1,v2,rn)/keT
p<r1)r27_._’rN> — — e Ulrira,rn)/kp
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