
10. Molecular Dynamics Simulations



Molecular dynamics simulations

▶ a technique for computing equilibrium and transport properties of a classical many-body
system

▶ very similar to real experiments in many aspects

▶ involves preparing a system (a sample), equilibrating it (wait), and computing observables
(measurement).

▶ common mistakes are very similar to those made in real experiments, such as: the system
is not prepared correctly, the measurement is too short, or we are not measuring the right
thing.
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Receipe for molecular dynamics simulations

▶ common workflow of a molecular dynamics simulation:

1. initialize the system including the positions and velocities of the particles
2. run the simulation by integrating the equations of motion
3. compute the observables of interest

▶ all three steps are crucial for a successful simulation

▶ the second step is often the most time-consuming part of a simulation
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Initialization

▶ assign the initial positions and velocities for all particles

▶ initial positions should be compatible with the structure that we want to simulate

▶ should not have particles overlapping with each other, which is often achieved by initially
placing the particles on a cubic lattice

▶ for molecules such as proteins with known structures, we could use the known structure as
the initial configuration
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Initialization

▶ initial velocities need to be compatible with the temperature of the system

▶ from statistical mechanics, we know that the average kinetic energy per degree of freedom
is given by 〈

1

2
mv2α

〉
=

1

2
kBT

▶ more specifically, the velocity components of a particle follow the Boltzmann distribution

p(vα) =
1√

2πkBT/m
e−mv2

α/2kBT

▶ we can assign the initial velocities by sampling from the Boltzmann distribution

▶ what is the average speed of a water molecule at room temperature?
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The equation of motion

▶ the equation of motion is given by Newton’s second law

mi
d2ri
dt2

= −∇iU(r1, r2, . . . , rN )

▶ an equivalent form is the Hamiltonian equations of motion

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi

where qi = ri, pi = mivi, and

H(q1,q2, . . . ,qN ,p1,p2, . . . ,pN ) = K(p1,p2, . . . ,pN ) + U(q1,q2, . . . ,qN )

=
∑
i

p2
i

2mi
+ U(q1,q2, . . . ,qN )
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The Hamiltonian equations of motion

▶ Hamiltonian equations

dqi

dt
=

∂H

∂pi
=

pi

mi

dpi

dt
= −∂H

∂qi
= −∇iU(q1,q2, . . . ,qN )

▶ in vector form, we have

d

dt

(
q

p

)
=

(
0 I

−I 0

)(
∂H
∂q

∂H
∂p

)

▶ a set of first-order differential equations and equivalent to Newton’s second law

▶ provides a more useful framework for understanding the dynamics of a system
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Integrating the Hamiltonian equations of motion

▶ a solution of the Hamiltonian equations of motion is a trajectory in the phase space of
(q,p)

▶ example: a harmonic oscillator

H(q, p) =
p2

2m
+

1

2
kq2

when m = 1 and k = 1

dq

dt
=

∂H

∂p
= p

dp

dt
= −∂H

∂q
= −q

q

p
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Integrating the Hamiltonian equations of motion

▶ most Hamiltonian systems are not solvable analytically

▶ need numerical methods to integrate the Hamiltonian equations of motion

▶ the naive method is the Euler method, which is not a good choice

▶ a much better method is the leap-frog Verlet method
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The Euler method

▶ naive Euler method

p(t+ ϵ) = p(t) + ϵ
dp

dt
= p(t)− ϵ

∂U

∂q
(q(t))

q(t+ ϵ) = q(t) + ϵ
dq

dt
= q(t) + ϵ

p(t)

m

▶ modified Euler method

p(t+ ϵ) = p(t)− ϵ
∂U

∂q
(q(t))

q(t+ ϵ) = q(t) + ϵ
p(t+ ϵ)

m
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The Euler method

▶ numerical trajectory for the 1-d harmonic oscillator
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The leap-frog Verlet method

▶ integration scheme

p(t+ ϵ/2) = p(t− ϵ/2)− 2
∂U

∂q
(q(t))

q(t+ ϵ) = q(t) + ϵ
p(t+ ϵ/2)

m

▶ is called the leap-frog method because the position and momentum are updated in a
staggered fashion

▶ is a symplectic integrator which preserves the phase space volume

▶ has better energy conservation properties than the Euler method
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The leap-frog Verlet method

▶ numerical trajectory for the 1-d harmonic oscillator
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The Hamiltonian equations are energy conserving

▶ both the Newtonian and Hamiltonian equations of motion are energy conserving

▶ trajectories are confined to a constant energy surface in phase space

▶ conformations of the system are sampled from the NVE ensemble, which is also called the
microcanonical ensemble

▶ we are mostly interested in the NVT ensemble, where the temperature is kept constant

▶ in the NVT ensemble, the system is contacted with and exchange energy with a heat bath

▶ in the NVT ensemble, the total energy is not conserved but fluctuates

▶ integrating the Hamiltonian equations of motion alone will not give us the NVT ensemble
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Integrators for the NVT ensemble

▶ several integrators are available for the NVT ensemble

– Andersen thermostat
– Nose-Hoover thermostat
– Langevin dynamics

▶ we will only discuss the Langevin dynamics, which is the most widely used method
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Langevin dynamics

▶ the Langevin equation for the NVT ensemble is given by

mi
dvi

dt
= −∇iU(r1, r2, . . . , rN )− γmivi +

√
2miγkBTRi(t)

▶ γ is the friction coefficient

▶ Ri(t) is an uncorrelated random force with zero mean and unit variance

▶ −γmivi is the frictional force modeling the viscous drag

▶
√
2miγkBTRi(t) is the random force modeling the interaction with the heat bath
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Integrating the Langevin equation

▶ use the Langevin leap-frog method

vi(t+ ϵ/2) = vi(t− ϵ/2)α− (1− α)/(γmi)
∂U

∂ri
(t) +

√
kBT (1− α2)/miRi(t)

ri(t+ ϵ) = ri(t) + ϵvi(t+ ϵ/2)

α = e−γϵ

▶ sampled momentums follow the Boltzmann distribution of

p(vi) =
1√

2πkBT/mi

e−miv
2
i /2kBT

▶ sampled configurations follow the Boltzmann distribution of

p(r1, r2, . . . , rN ) =
1

Z
e−U(r1,r2,...,rN )/kBT
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